Publications
Journal Papers
-
IEEE Transactions on Power Electronics2020
arrow_drop_downTo better support the superconducting propulsion system in the future aircraft applications, the technologies of high-power high switching frequency power electronics systems at cryogenic temperatures should be investigated. This article presents the development of a 40-kW cryogenically cooled three-level active neutral point clamped inverter with 3 kHz output line frequency and 140 kHz switching frequency. Si mosfets are characterized at cryogenic temperatures, and the results show that they have promising performance such as lower on-resistance and switching loss. The design of the inverter is presented in detail with the special consideration of the cryogenic temperature operation. Moreover, a packaging and integration architecture is designed and fabricated to demonstrate the feasibility and performance of the inverter in the lab. It is able to achieve no leakage with good thermal and air insulation. With the inverter and packaging, the experimental results show that the inverter operates properly at cryogenic temperatures. The loss is measured at different load conditions, and the loss analysis is given, which shows that the cryogenically cooled inverter has 30% less loss than operating at room temperature.
[BibTeX]IEEE Transactions on Power Electronics2020
arrow_drop_downUsing high voltage (HV) Silicon Carbide (SiC) power semiconductors in the modular multilevel converter (MMC) is promising because of a fewer submodules and lower switching loss compared to conventional Si based solutions. The nearest level pulse width modulation (NL-PWM) is commonly used in the MMC for medium voltage applications. However, with the NL-PWM and existing voltage balancing control, there are many submodules that switch their modes in a control cycle, resulting in a high dv/dt during the deadtime of the power semiconductor, which could be multiple times of the dv/dt of single device. This poses great challenges on the noise immunity and insulation design in the MMC using HV SiC devices, which have very fast switching speed. A novel voltage balancing control, which ensures only two submodules switch their modes in a control cycle, is proposed in this paper, limiting the maximum dv/dt to the dv/dt of single power semiconductor and meanwhile maintaining the voltage balance performance. The proposed voltage balancing control is experimentally validated in a 10 kV SiC MOSFET based MMC with four submodules per arm.
[BibTeX]IEEE Transactions on Power Electronics2020
arrow_drop_downThis article establishes an analytical model for the device drain–source overvoltage related to the two loops in three-level active neutral point clamped (3L-ANPC) converters. Taking into account the nonlinear device output capacitance, two common modulation methods are investigated in detail. The results show that the line switching frequency device usually has higher overvoltage, and the switching speed of the high switching frequency device is not strongly influenced by the multiple loops. By keeping the nonactive clamping switch off, the effect of the nonlinear device output capacitance can be significantly mitigated, which helps reduce the overvoltage. Moreover, the loop inductance can be reduced with vertical loop layout and magnetic cancellation in the printed circuit board and busbar design. A 500-kVA 3L-ANPC converter using silicon carbide mosfets was built and tested. The experimental results validate the overvoltage model of the two modulation methods as well as the busbar design. With the nonactive clamping switch off, the overvoltage of both the high and line switching frequency devices is significantly reduced, which helps achieve higher switching speed.
[BibTeX]IEEE Journal of Emerging and Selected Topics in Power Electronics2020
arrow_drop_downIn order to evaluate the feasibility of newly developed gallium nitride (GaN) devices in a cryogenically cooled converter, this article characterizes a 650-V enhancement-mode GaN high-electron mobility transistor (GaN HEMT) at cryogenic temperatures. The characterization includes both static and dynamic behaviors. The results show that this GaN HEMT is an excellent device candidate to be applied in cryogenic-cooled applications. For example, transconductance at cryogenic temperature (93 K) is 2.5 times higher than one at room temperature (298 K), and accordingly, peak di/dt during turn-on transients at cryogenic temperature is around 2 times of that at room temperature. Moreover, the ON-resistance of the channel at the cryogenic temperature is only one-fifth of that at room temperature. The corresponding explanations of performance trends at cryogenic temperatures are also given from the view of semiconductor physics. In addition, several device failures were observed during the dynamic characterization of GaN HEMTs at cryogenic temperatures. The ultrafast switching speed-induced high di/dt and dv/dt at cryogenic temperatures amplify the negative effects of parasitics inside the switching loop. Based on failure waveforms, two failure modes were classified, and detailed failure mechanisms caused by ultrafast switching speed are given in this article.
[BibTeX]IEEE Transactions on Power Electronics2020
arrow_drop_downParalleling three phase three-level inverters is gaining popularity in industrial applications. However, analytical models for the harmonics calculation of a three-level neutral point clamped (NPC) inverter with popular space vector modulation (SVM) are not found in the literature. Moreover, how interleaving angle impacts the dc- and ac-side harmonics and electromagnetic interference (EMI) harmonics in parallel interleaved three-level inverters and how to optimize interleaving angle to reduce these harmonics have not been discussed in the literature. Furthering previous study, this article presents the modeling, analysis, and reduction of harmonics in paralleled and interleaved three-level NPC inverters with SVM. Analytical models for harmonic calculation are developed, and the dc-side harmonics characteristics of an NPC inverter are identified. The impact of interleaving angle on the ac-side voltage and dc-link current harmonics of parallel interleaved three-level NPC inverters is comprehensively studied. The impact of switching frequency and interleaving angle on EMI harmonics is also illustrated. Optimal interleaving angle ranges to reduce these harmonics are derived analytically. The developed models and harmonic reduction analysis are verified experimentally with two paralleled and interleaved three-level NPC inverters.
[BibTeX]IEEE Transactions on Power Electronics2020
arrow_drop_downIn order to apply power electronics systems to applications such as superconducting systems under cryogenic temperatures, it is necessary to investigate the characteristics of different parts in the power electronics system. This article reviews the influence of cryogenic temperature on power semiconductor devices including Si and wide bandgap switches, integrated circuits, passive components, interconnection and dielectric materials, and some typical cryogenic converter systems. Also, the basic theories and principles are given to explain the trends for different aspects of cryogenically cooled converters. Based on the review, Si active power devices, bulk Complementary metal-oxide-semiconductor (CMOS) based integrated circuits, nanocrystalline and amorphous magnetic cores, NP0 ceramic and film capacitors, thin/metal film and wirewound resistors are the components suitable for cryogenic operation. Pb-rich PbSn solder or In solder, classic printed circuit boards material, most insulation papers and epoxy encapsulant are good interconnection and dielectric parts for cryogenic temperatures.
[BibTeX]IEEE Transactions on Sustainable Energy2020
arrow_drop_downThis paper presents a new control method to enable large-scale solar photovoltaic (PV) plants to damp electromechanical oscillations. The proposed step-down modulation (SDM) control method is based on active power modulation, and it does not require curtailment as in other approaches. After an oscillation event is detected, the PV panel voltage is controlled to transiently deviate the power from its maximum power point (MPP), this power margin is used to modulate active power until the oscillation event is mitigated. Then, the SDM control restores the PV power to its MPP, and it is reset to operate for the next event. The control design, panel voltage strategy, and implementation is tested in a two-area system. A comparison of the SDM control with a curtailment-based PV damping control is also explored in a test case of the 179-bus WECC system with six large-scale PV plants, showing the improved damping capability of the proposed method.
[BibTeX]IEEE Transactions on Power Electronics2020
arrow_drop_downTurn-on loss is the dominant part of the switching loss for SiC MOSFETs in hard switching. It is difficult to reduce turn-on loss with conventional voltage source gate drives (VSGs) because of the limited gate voltage rating and large internal gate resistance of SiC MOSFETs. A charge pump gate drive (CPG) that can reduce the turn-on loss is presented in this paper. By pre-charging the charge-storage capacitor in the gate drive with a charge pump circuit, the gate drive output voltage is pumped up to provide higher gate current during the turn-on transient. As a result, the turn-on time and loss is decreased. Moreover, due to the charge transfer from the charge-storage capacitor to the MOSFET gate capacitance, the pumped output voltage can naturally drop back to a normal value that avoids gate overcharging. The structure of the gate drive is simple, and no additional control is needed. The operation of the proposed CPG is verified with double pulse tests based on SiC MOSFETs. The switching loss of the proposed CPG is reduced by up to 71.7% compared to the conventional VSG at full load condition.
[BibTeX]IEEE Transactions on Power Electronics2020
arrow_drop_downThe attenuation performance of an electromagnetic interference filter can be significantly degraded by coupling, parasitics, and frequency-dependent nonlinearity, especially in high frequency (HF) range. This article reveals and investigates a mutual capacitive coupling effect in the popular filter structures with T-shaped joint. The mechanism is explained and the impact on filter attenuation is analyzed, which show this coupling is the dominant cause of performance degradation of T-shaped filters and a major cause for other T-shape-related filters. The effect patterns for both common-mode (CM) and differential-mode (DM) filters are analytically derived and further examined in multistage filter structures. Mitigation solutions using PCB slits and grounded shielding are proposed to improve filter transfer gain up to 30 dB in the HF range. A topological strategy is also presented, further enhancing filter attenuation. In addition, the impact of relative positions of the inductors on the coupling capacitance is discussed, and five positions are experimentally studied and compared. Experimental results obtained from three-phase LCL and LCLC filters verify the significance of this coupling and the effectiveness of the mitigation methods.
[BibTeX]IEEE Transactions on Industrial Electronics2020
arrow_drop_downThis paper studies how an outer fractional winding can impact the equivalent parallel capacitance (EPC) of a differential-mode inductor, which is a critical passive component in a power electronic converter to combat with electromagnetic noises, and proposes a winding scheme that can reduce EPC and increase inductance, achieving both high-frequency filtering performance and high density. To perform these studies, a comprehensive layer capacitance model based on energy equivalence principle is established, which decouples EPC contribution among three elements, i.e., outer fraction layer, layer-to-layer, and layer-to-core, thus enabling the impact evaluation of different winding elements and schemes. Experimental comparison results have validated the accuracy of this EPC model and excellent performance of the proposed winding scheme with EPC reduction by 4×. It reveals that contrary to previous understanding, the inverse winding, in fact, is more effective for EPC reduction than the direct winding in most of the partial layer scenarios, and that by using this scheme with the outer fraction layer, 45% higher inductance and slightly less EPC can be achieved, compared to the single-layer winding design.
[BibTeX]IEEE Transactions on Power Electronics2020
arrow_drop_downTransformer flux dc bias is a critical issue, impacting the reliable operation of dual active bridge (DAB) converters especially when ungapped high permeability nanocrystalline core is used. Steady state current dc bias can easily saturate ungapped nanocrystalline transformers, and it is even more dangerous in transient conditions. A dc bias model is proposed to analyze steady state dc bias in different load conditions. The magnetizing current detection is necessary for closed loop control of dc bias, conductors’ position is shown to impact sensor noise, and it is detailed analyzed. To deal with both steady state and transient dc bias, a unified flux balancing control (UFBC) is proposed introducing a predictive bias suppression (PBS) method with closed-loop flux balancing control (CFBC). With the proposed PBS, both primary/secondary current balance and flux balance can be achieved within one switching cycle using UFBC. Power characteristics and interaction between power control and flux balancing control of DAB converters are analyzed, and the CFBC need to work in a low bandwidth due to sensor bandwidth limitation and interaction between power control and flux balancing control. The UFBC is verified on a 300kW cascaded DAB converter prototype.
[BibTeX]IEEE Transactions on Smart Grid2020
arrow_drop_downFor system planning of three-phase inverter-based islanded ac microgrids, the low frequency instability issue caused by interactions of inverter droop controllers is a major concern. When internal control information of procured commercial inverters is unknown, impedance-based small-signal stability criteria facilitate prediction of resonances in medium and high frequency ranges, but they usually assume the grid fundamental frequency as constant and thus they are incapable of analyzing the low-frequency oscillation of the fundamental frequency in islanded microgrids. Aiming at solving this issue, this paper proposes two stability analysis methods based on terminal characteristics of inverters and passive connection network including the dynamics of the fundamental frequency for analysis of low-frequency stability in islanded multiple-bus microgrids. Based on the Component Connection Method (CCM) to systematically separate inverters from the passive connection network, a general approach is developed to model the microgrid as a multiple-input-multiple-output (MIMO) negative feedback system in the common system d-q reference frame. By applying the generalized Nyquist stability criterion (GNC) to the return-ratio and return-difference matrices of the MIMO system model, the low-frequency stability related to the fundamental frequency can be analyzed using the measured terminal characteristics of inverters. Analysis and simulation of a 37-bus microgrid verify the effectiveness of the proposed stability analysis methods.
[BibTeX]IEEE Transactions on Power Electronics2020
arrow_drop_downDual-active-bridge (DAB) circuit is an excellent candidate for a high-efficiency, high-power density, and bidirectional electric vehicle charger. Unlike resonant circuits employing auxiliary inductors and capacitors, DAB minimizes the usage of passive components. The challenge, however, lies in the difficulty of securing zero-voltage switching (ZVS), particularly at light-to-medium load when using the conventional single-phase-shift (SPS) control. This is of utmost importance not only for the sake of the efficiency, but also for minimizing the switch-bridge crosstalk caused by the hard switching-on, thereby enhancing the system reliability. Although dual-phase-shift (DPS) and triple-phase-shift (TPS) can be the answer, they do introduce side effects such as larger switching-off current. This article systematically integrates SPS, DPS, and TPS to maximize full-power ZVS range for both steady state and transient operations in EV chargers. This article plots ZVS boundaries over the full power range, categorizes all operations into nine modes, and proposes a smooth transition method among all operation modes. Dead band is also incorporated in the ZVS boundary setting. Experimental results on a SiC-based charger validate the effectiveness of this method of widening ZVS range for output voltage of 200-450 Vdc and power of 0-20 kW, achieving smooth transitions among various operation modes, and suppressing the switch crosstalk, thereby securing high charger reliability.
[BibTeX]IEEE Transactions on Industrial Electronics2020
arrow_drop_downWide bandgap semiconductors with fast switching speed capability are becoming an enabler to achieve the higher power density design. However, the further increase of switching frequency cannot continuously improve the power quality of ac-side waveforms in dc-ac/ac-dc application. The main reason is the distortion of pulsewidth modulation (PWM) voltage at switching point under high switching frequency. In general, there are two contributors causing PWM voltage distortions in bridge-based topologies. One is the deadtime, which occupies higher ratio in the small duty cycle case under high switching frequency and induces the voltage errors. The other one is the turn-off transient in the small load current or around the zero-crossing point of the ac-side current, because the relatively slow rising slope of the drain-source voltage will affect the right duty cycle. To solve this issue, this paper proposes a closed-loop modulation scheme to compensate the duty cycle distortion of PWM voltage based on one-cycle control or charge control. Compared to the traditional feedforward type of compensation, the proposed scheme does not need online calculation and instantaneous inductor current sampling, and it shows potential to be a general scheme for variety of topologies and modulations. Simulations and experiments are carried out on a 400-kHz single-phase full-bridge inverter with 400-Hz fundamental frequency to demonstrate the performance of the proposed approach.
[BibTeX]IEEE Transactions on Transportation Electrification2020
arrow_drop_downWide-bandgap (WBG) devices are considered to be a better alternative to silicon switches to realize high-efficiency and high-power-density power electronics converters, such as electric vehicle (EV) onboard chargers. The two major challenges of GaN devices are their relatively high cost (~5 times compared to Si) and much smaller footprint than Si, which though is preferred in the high-power-density application is preferred but brings thermal challenges. Much like SiC is paralleled with Si, and GaN could be paralleled with Si to resolve these challenges. In this article, gallium nitride (GaN) high-electron-mobility transistors (HEMTs) are paralleled to various Si MOSFETs. Two different triggering approaches are considered: one adds a time delay between gate signals and the other uses a pulse triggering technique. Both methods ensure that the GaN endures the switching loss, while the Si switches conduct the majority of the current, thereby maximizing the advantages of both types of switches. To follow is a comprehensive study of the critical transient processes, such as the gate cross talking between Si and GaN, current commutation in the dead band, voltage spikes during the turn-off caused by parasitics, the thermal performance, and the cost analysis. Demonstrated success testing this approach at 400 V/80 A provides evidence that this is a possible approach in the onboard EV battery charger applications. The success of testing under 400 V/80 A makes it possible to an onboard EV battery charger.
[BibTeX]IEEE Transactions on Transportation Electrification2020
arrow_drop_downMulti-pulse AC/DC Rectifiers (MPRs) are widely used in aviation application due to their rugged structure, cost effective, and high reliability features. In this paper, an overview of the recent advances and trends on the MPR technology, mainly the auto-configured transformer based MPRs, and its application in more electric aircrafts are performed. The work covers system topologies, transformer configurations, passive and active harmonic reduction schemes, case study, practical selection and design guideline, and applications. To fairly evaluate the performances of MPRs with different pulse number, necessary simulation studies are carried out under comparable conditions, including power rating, input and output specifications, and transformer configuration etc. Then, an 18-pulse asymmetric DP configured prototype is established based on the simulation evaluation and experimental verification is performed. It is expected that the paper can provide a broad perspective on MPR technology, and, in particular, highlight the latest emerged technology that significantly promotes the performances of MPRs. More importantly, it is desired that the results obtained in this paper can provide an effective selection guideline and design suggestion for researchers and engineers engaged in designing MPRs, especially for aviation application.
[BibTeX]IEEE Journal of Emerging and Selected Topics in Power Electronics2019
arrow_drop_downTo understand the limitation of maximizing the switching speed of SiC low current discrete devices and high current power modules in hard switching applications, double pulse tests are conducted and the testing results are analyzed. For power modules, the switching speed is generally limited by the parasitics rather than the gate drive capability. For discrete SiC devices, the conventional voltage source gate drive (VSG) is not sufficient to maximize the switching speed even if the external gate resistance is minimized. The limitation of existing current source gate drives (CSG) are analyzed, and a CSG dedicated for SiC discrete devices is proposed, which can provide constant current during the switching transient regardless of the high Miller voltage and large internal gate resistance. Compared with the conventional VSG, the proposed CSG achieves 67% faster turnon time and 50% turn-off time, and 68% reduction in switching loss at full load condition.
[BibTeX]IET Generation, Transmission & Distribution2019
arrow_drop_downFor some distribution networks equipped with smart switches such as Chattanooga Electric Power Board (EPB) system, they can island some areas of the network to mitigate the impact through defensive islanding. However, due to intermittency and uncertainty of renewable-based distributed energy resources (DERs), it is highly likely that the islanded areas would experience insufficient or surplus power. This problem can be relieved by changing the boundaries of islanded areas to incorporate neighbouring load sections (LSs) or disconnect some connected LSs. Considering penetration level and sharply changing rate of renewable energy, it is challenging to define suitable boundaries for islanded areas in real time. Therefore, a two-stage energy management system (EMS) is proposed in this study, which includes day-ahead scheduling stage as well as short-term and real-time control stages. In the first stage, the initial switch combinations of LSs and DERs’ scheduling are obtained through a mixed integer quadratic programming, whereas the second stage is based on rule-based power management algorithm. Finally, a model reduced from real EPB system is used for validating the proposed two-stage EMS. The results successfully verify the effectiveness and performance of the proposed EMS for addressing the energy management of islanded areas under defensive islanding.
[BibTeX]IET Smart Grid2019
arrow_drop_downThe design, implementation, and testing of a control system for a flexible microgrid (MG) is presented in this study. The MG controllers can be implemented in a real-world MG with multiple smart switches, photovoltaic panel system, and battery energy storage systems (BESSs). With the benefits from smart switches, the MG has unique characteristics such as dynamic boundary and flexible point of interconnection (POI) concepts. To control such a unique MG and realise the dynamic boundary, an MG central controller and two types of local controllers are implemented. Compared to the MG with fixed boundary, the MG with dynamic boundary can have smaller BESS capacity, better utilisation of renewable energy, and multiple POI options. Also, compared with IEEE Std 2030.7–2017, the topology identification and active and reactive power balance functions are newly designed to realise the dynamic boundary concept. The planned islanding and reconnection functions are modified to realise the flexible POI concept. These functions are introduced including the software architecture, cooperation, and interaction among them. Finally, a hardware-in-the-loop testing platform based on the Opal-RT real-time simulator is set up to verify the performance, realisation of the dynamic boundary, and flexible POI concepts with four comprehensive test scenarios.
[BibTeX]IEEE Transactions on Power Electronics2019
arrow_drop_downJunction temperature is an important design/operation parameter, as well as, a significant indicator of device's health condition for power electronics converters. Compared to its silicon (Si) counterparts, it is more critical for silicon carbide (SiC) devices due to the reliability concern introduced by the immaturity of new material and packaging. This paper proposes a practical implementation using an intelligent gate drive for online junction temperature monitoring of SiC devices based on turn-off delay time as the thermo-sensitive electrical parameter. First, the sensitivity of turn-off delay time on the junction temperature for fast switching SiC devices is analyzed. A gate impedance regulation assist circuit is proposed to enhance the sensitivity by a factor of 60 and approach 736 ps/°C tested in the case study with little penalty on the power conversion performance. Next, an online monitoring unit based on gate assist circuits is developed to monitor the turn-off delay time in real time with the resolution less than 104 ps. As a result, the micro-controller is capable of “reading” junction temperature during the converter operation. Finally, a SiC-based half-bridge inverter is constructed with an intelligent gate drive consisting of the gate impedance regulation circuit and online turn-off delay time monitoring unit. Experimental results demonstrate the feasibility and accuracy of the proposed approach.
[BibTeX]IEEE Transactions on Power Electronics2019
arrow_drop_downThis paper identifies extra junction capacitances and switching commutation loops introduced by line-frequency devices (i.e., non-active every other half line cycle) in three-level ac/dc converters and investigates the corresponding effects. Junction capacitances and power loops are well known as the key factors that impact converter switching loss and device stress, thus influence device selection, power stage layout, and thermal design. By examining switching transients of the commonly used T-shaped and I-shaped three-level converters, the cause and mechanism of the extra junction capacitances and power loops are presented. The impacts on switching loss, device voltage stress, and ac-side voltage/current distortion are respectively reported and analyzed. A loss calculation scheme for the three-level converter to include that extra loss is proposed. A power layout scheme to mitigate the device voltage stress is provided. Compensation and modeling of the voltage and current distortion are also proposed. Experimental results conducted on several types of three-level converter prototypes including a gallium nitride based 115 Vac/650 Vdc/1.5-kW/450-kHz Vienna-type rectifier and a SiC MOSFET based 1-kV/10-kW/ 280-kHz three-level active neutral-point-clamped inverter confirm the presented effects and verify the associated analysis and solutions.
[BibTeX]IEEE Transactions on Industry Applications2019
arrow_drop_downBattery energy storage systems (BESSs) tend to be too costly, restrictive, and require high maintenance for experimental use, but power system tests often need their representation. As a solution, we propose an all-in-one, reconfigurable BESS emulation tool for grid applications that only requires one three-phase voltage-source converter. This emulator provides chemistry-specific battery behavior like previous work, but it also includes the BESS's power electronics interface and control as well as automatic frequency and voltage support functions for the attached power system. Thus, it allows simple, plug-and-play BESS emulation for grid applications. This paper details the construction, verification, and use of the BESS emulator in an existing grid testbed and concludes that it provides an inexpensive, easy-to-use alternative to using real BESSs in power system experiments.
[BibTeX]IEEE Transactions on Power Electronics2019
arrow_drop_downThis paper presents the characterization of the temperature-dependent short-circuit performance of a Gen3 10 kV/20 A silicon carbide (SiC) mosfet. The test platform consisting of a phase-leg configuration and a fast speed 10-kV solid state circuit breaker, with temperature control, is introduced in detail. A novel FPGA-based short-circuit protection circuit having a response time of 1.5 μs is proposed and integrated into the gate driver. The short-circuit protection is validated through the platform. The short-circuit characteristics for both the hard switching fault and fault under load (FUL) types at various dc-link voltages (from 500 V to 6 kV) are tested and discussed. The saturation current increases with dc-link voltage and achieves 360 A at 6 kV. Different from low voltage SiC devices, there is no current spike in FUL type of fault. The temperature-dependent short-circuit performance is also presented from 25 to 125 °C. The difference of short-circuit waveforms at various initial junction temperatures can be neglected. A thermal model of the 10-kV SiC mosfet is built for the junction temperature estimation during the short circuit and for analysis of the initial junction temperature impact on the short-circuit performance.
[BibTeX]IEEE Transactions on Power Electronics2019
arrow_drop_downAs wide-bandgap (WBG) devices and applications move from niche to mainstream, a new generation of engineers trained in this area is critical to continue the development of the field. This paper introduces a new hands-on course in characterization of WBG devices, which is an emerging and fundamental topic in WBG-based techniques. First, the lecture-simulation-experiment format based course structure and design considerations, such as safety, are presented. Then, the necessary facilities to support this hands-on course are summarized, including classroom preparation, software tools, and laboratory equipment. Afterward, the detailed course implementation flow is presented to illustrate the approach of close interaction among lecture, simulation, and experiment to maximize students' learning outcomes. Finally, grading for students and course evaluation by students are discussed, highlighting the findings and potential improvements. Detailed course materials are provided via potenntial.eecs.utk.edu/WBGLab for educational use.
[BibTeX]IEEE Transactions on Power Electronics2019
arrow_drop_downSemiconductor devices based solid-state circuit breakers (SSCBs) are promising in the dc power distribution system as protective equipment for their ultrashort action time. This letter proposes a topology of SSCB using series connected silicon carbide (SiC) metal oxide semiconductor field effect transistors (mosfets), which only requires a single isolated gate driver. The SSCB has very low cost and high reliability because it only has 13 components including passive components and diodes apart from two SiC mosfets to achieve both balanced voltage distribution during short-circuit interruption duration and reliable positive gate voltage during on-state. The SSCB prototype is built and experimentally verified to interrupt 75 A short-circuit current under the dc-bus voltage of 1200 V within 1.5 μs.
[BibTeX]IEEE Journal of Emerging and Selected Topics in Power Electronics2019
arrow_drop_downSilicon carbide (SiC) power modules are promising for high-power applications because of the high breakdown voltage, high operation temperature, low ON-resistance, and fast switching speed. However, the large parasitic inductance in existing package designs results in compromised performance, i.e., long blanking time in the desaturation protection scheme and large overvoltage spikes during the switching transient. Consequently, the benefits of SiC devices are often not fully utilized in practical applications. This paper deals with these two issues and aims at improving the electrical performance of the existing SiC module package. Specifically, a package design with Kelvin drain-to-source connection is first proposed to minimize the blanking time. More than 99% reduction of blanking time is achieved experimentally compared to the conventional package design. Second, a low parasitic inductance package with double-side cooling is proposed to allow the fast switching speed of SiC devices without sacrificing the thermal performance. A power loop inductance of 1.63 nH is realized from Q3D simulation. Verified by the experiment, more than 60% reduction of power loop inductance is achieved in comparison to a previously designed baseline module. At 0-Ω external gate resistance, the turn-off voltage spike is less than 9% of the dc-link voltage under the rated load condition.
[BibTeX]IEEE Access2019
arrow_drop_downElectric distribution systems around the world are seeing an increasing number of utility-owned and non-utility-owned (customer-owned) intelligent devices and systems being deployed. New deployments of utility-owned assets include self-healing systems, microgrids, and distribution automation. Non-utility-owned assets include solar photovoltaic generation, behind-the-meter energy storage systems, and electric vehicles. While these deployments provide potential data and control points, the existing centralized control architectures do not have the flexibility or the scalability to integrate the increasing number or variety of devices. The communication bandwidth, latency, and the scalability of a centralized control architecture limit the ability of these new devices and systems from being engaged as active resources. This paper presents a standards-based architecture for the distributed power system controls, which increases operational flexibility by coordinating centralized and distributed control systems. The system actively engages utility and non-utility assets using a distributed architecture to increase reliability during normal operations and resiliency during extreme events. Results from laboratory testing and preliminary field implementations, as well as the details of an ongoing full-scale implementation at Duke Energy, are presented.
[BibTeX]IEEE Transactions on Transportation Electrification2019
arrow_drop_downCompared with grid to vehicle (G2V) and vehicle to grid (V2G) modes, electric vehicle (EV) battery chargers are more vulnerable to power quality problems at the autonomous mode, i.e., creating its own electric grid during the grid blackout while facing unbalanced and nonlinear loads. Active damping is another common challenge given most charger equip LC filters at grid-end voltage-source inverters (VSIs). In this article, an output-voltage control with harmonic compensation plus virtual impedance term is proposed to achieve high power quality and necessary damping, respectively. The physical meaning of the virtual impedance is further explained, and the voltage loop with PI plus multiresonant terms is analyzed in depth. More importantly, the analytical solutions and procedures to design such controllers considering the time delays are proposed. Finally, simulation results and experimental data on an EV battery charger prototype using SiC devices, which is made of one VSI and one isolated dc/dc converter, validate the effectiveness of the proposed design methodology.
[BibTeX]IEEE Transactions on Transportation Electrification2019
arrow_drop_downAs a new application area of electric vehicles, vehicle to home (V2H) recently becomes one of the most attractive research areas. In this paper, a three-phase four-wire inverter using four half-bridge legs is adopted to realize the V2H functionality. Such three-phase inverter acts as the grid-side ac/dc part of the battery charger. In order to deal with the imbalanced load, an independently controlled neutral module has been adopted to form the neutral line and provide the path for the zero-sequence current, together with split dc-bus capacitors. Each phase employs the independent sinusoidal pulse width modulation control with the virtual resistor paralleled with the load, namely, notch-filter-incorporated capacitor voltage feedback control, which damps harmonics around the resonant frequency at various load conditions. In addition, this paper quantifies the load imbalance versus the dc-link voltage oscillation and provides the guidance for the selection of the dc-link capacitance. Finally, a 10-kW three-phase four-wire inverter working at the V2H mode is built and tested, with the three-phase imbalanced load imposed to validate the proposed design and control strategy.
[BibTeX]IEEE Transactions on Transportation Electrification2019
arrow_drop_downThe integrated starter-generator system (ISGS) is a combination of starter and generator for independent power systems in transportation. It replaces both a conventional starter and generator with a single set of highly integrated devices. A power hardware in the loop simulation that is flexible and can include the hardware under test is used to test the ISGS under representative field conditions. This paper utilizes the special structure of the ISGS and proposes an ISGS emulator (ISGSE) to develop and test the converter. The proposed ISGSE can be used to test a variety of motor drives or rectifiers including dynamic capabilities without necessitating a connection to a large motor load. To emulate the ISGS, the structure and operation principle in different modes are introduced in detail. Also, the issue of stability and accuracy is discussed in this paper. Detailed simulation and experimental comparisons are carried out between the ISGS and the ISGSE, which validates the proposed ISGSE as an effective tool for designing and testing new motor drives.
[BibTeX]IEEE Journal of Emerging and Selected Topics in Power Electronics2019
arrow_drop_downFor any voltage above 600-V dc, it is usually recommended to use 900-1200-V SiC MOSFETs instead of GaN high-electron-mobility transistors (HEMTs), given presently commercial GaN HEMTs have the maximum voltage rating up to 650 V. This paper is an attempt of employing 650-V E-mode GaN HEMTs to build a three-level bidirectional dc/dc converter, with the input as an 800-V battery, the output as the ~400-V dc grid, and half of the switches working at the hard-switching mode. The active-balancing control instead of using clamping diodes in the conventional neutral-point clamping topology is adopted, aiming at higher efficiency. Simulation based on the double-pulse test results shows that such a design strategy with GaN has a better efficiency over the conventional 1200-V SiC MOSFETbased buck/boost converter. Two bottom-cooled GaN HEMTs are in parallel to enhance the power capability and efficiency, which require the special focus on the parasitic parameters. The effects of parasitics, especially the stray inductance in the current commutating loop and the gate drive loop during switching transitions, have been comprehensively analyzed in this paper. Experimental results under 800-V bus voltage are presented to verify the proposed solution.
[BibTeX]IEEE Transactions on Power Electronics2019
arrow_drop_downMiddle-point inductance Lmiddle can be introduced in multiple-chip power module package designs. In this paper, the effect of middle-point inductance on switching transients is analyzed first using a frequency-domain analysis. Then a dedicated multiple-chip power module is fabricated with the capability of varying Lmiddle, and extensive switching tests are conducted to evaluate the middle-point inductance's impact. Experiment result shows that the active MOSFET's turn-on loss decreases at higher values of Lmiddle, while its turn-off loss increases. Detailed analysis of this loss variation is presented. In addition to the switching loss variation, it is also observed that different peak voltage stresses are imposed on the active switch and antiparallel diode during the switching transients. Specifically, in the case of lower MOSFET's turn-off, the maximum voltage of the lower MOSFET increases as Lmiddle goes up; however, the peak voltage of the antiparallel diode decreases significantly. The induced voltage spikes during upper MOSFET turn-on process is also evaluated, and an opposite trend is observed experimentally. Analysis of the voltage overshoot variation is discussed. Based on the experimental evaluation and analysis, a multiple-chip power module package design guideline is summarized considering the middle-point inductance's effect.
[BibTeX]IEEE Transactions on Power Electronics2019
arrow_drop_downParasitic ringing is commonly observed during the high-speed switching of wide band-gap (WBG) devices. Additional loss contributed by parasitic ringing becomes a concern especially for high switching frequency applications. This paper investigates the effects of parasitic ringing on the switching loss of WBG devices in a phase-leg configuration. An analytical switching loss model considering parasitics in power devices and application circuit is derived. Two switching commutation modes, gate drive dominated mode and power loop dominated mode, are investigated, respectively, and the switching loss induced by damping ringing is identified. It is found that this portion of the loss is at most the energy stored in parasitics, which always exists regardless of the switching speed and parasitic ringing. Therefore, with the given WBG device in the specific application circuit, damping more severe parasitic ringing during faster switching transient would not introduce higher switching loss. Additionally, the extra switching loss induced by resonance among parasitics and crosstalk is investigated. It is observed that severe resonance and its resultant over-voltage during the turn-on transient worsen the crosstalk, causing large shoot-through current and excessive switching loss. The theoretical analysis has been verified by the double pulse test with a 1200-V/50-A SiC-based phase-leg power module.
[BibTeX]IEEE Transactions on Transportation Electrification2019
arrow_drop_downThe integrated starter-generator system (ISGS) is a combination of starter and generator for independent power systems in transportation. It replaces both a conventional starter and generator with a single set of highly integrated devices. A power hardware in the loop simulation that is flexible and can include the hardware under test is used to test the ISGS under representative field conditions. This paper utilizes the special structure of the ISGS and proposes an ISGS emulator (ISGSE) to develop and test the converter. The proposed ISGSE can be used to test a variety of motor drives or rectifiers including dynamic capabilities without necessitating a connection to a large motor load. To emulate the ISGS, the structure and operation principle in different modes are introduced in detail. Also, the issue of stability and accuracy is discussed in this paper. Detailed simulation and experimental comparisons are carried out between the ISGS and the ISGSE, which validates the proposed ISGSE as an effective tool for designing and testing new motor drives.
[BibTeX]IEEE Journal of Emerging and Selected Topics in Power Electronics2019
arrow_drop_downFor any voltage above 600-V dc, it is usually recommended to use 900-1200-V SiC MOSFETs instead of GaN high-electron-mobility transistors (HEMTs), given presently commercial GaN HEMTs have the maximum voltage rating up to 650 V. This paper is an attempt of employing 650-V E-mode GaN HEMTs to build a three-level bidirectional dc/dc converter, with the input as an 800-V battery, the output as the ~400-V dc grid, and half of the switches working at the hard-switching mode. The active-balancing control instead of using clamping diodes in the conventional neutral-point clamping topology is adopted, aiming at higher efficiency. Simulation based on the double-pulse test results shows that such a design strategy with GaN has a better efficiency over the conventional 1200-V SiC MOSFETbased buck/boost converter. Two bottom-cooled GaN HEMTs are in parallel to enhance the power capability and efficiency, which require the special focus on the parasitic parameters. The effects of parasitics, especially the stray inductance in the current commutating loop and the gate drive loop during switching transitions, have been comprehensively analyzed in this paper. Experimental results under 800-V bus voltage are presented to verify the proposed solution.
[BibTeX]IEEE Transactions on Power Electronics2019
arrow_drop_downMiddle-point inductance Lmiddle can be introduced in multiple-chip power module package designs. In this paper, the effect of middle-point inductance on switching transients is analyzed first using a frequency-domain analysis. Then a dedicated multiple-chip power module is fabricated with the capability of varying Lmiddle, and extensive switching tests are conducted to evaluate the middle-point inductance's impact. Experiment result shows that the active MOSFET's turn-on loss decreases at higher values of Lmiddle, while its turn-off loss increases. Detailed analysis of this loss variation is presented. In addition to the switching loss variation, it is also observed that different peak voltage stresses are imposed on the active switch and antiparallel diode during the switching transients. Specifically, in the case of lower MOSFET's turn-off, the maximum voltage of the lower MOSFET increases as Lmiddle goes up; however, the peak voltage of the antiparallel diode decreases significantly. The induced voltage spikes during upper MOSFET turn-on process is also evaluated, and an opposite trend is observed experimentally. Analysis of the voltage overshoot variation is discussed. Based on the experimental evaluation and analysis, a multiple-chip power module package design guideline is summarized considering the middle-point inductance's effect.
[BibTeX]IEEE Transactions on Power Electronics2019
arrow_drop_downParasitic ringing is commonly observed during the high-speed switching of wide band-gap (WBG) devices. Additional loss contributed by parasitic ringing becomes a concern especially for high switching frequency applications. This paper investigates the effects of parasitic ringing on the switching loss of WBG devices in a phase-leg configuration. An analytical switching loss model considering parasitics in power devices and application circuit is derived. Two switching commutation modes, gate drive dominated mode and power loop dominated mode, are investigated, respectively, and the switching loss induced by damping ringing is identified. It is found that this portion of the loss is at most the energy stored in parasitics, which always exists regardless of the switching speed and parasitic ringing. Therefore, with the given WBG device in the specific application circuit, damping more severe parasitic ringing during faster switching transient would not introduce higher switching loss. Additionally, the extra switching loss induced by resonance among parasitics and crosstalk is investigated. It is observed that severe resonance and its resultant over-voltage during the turn-on transient worsen the crosstalk, causing large shoot-through current and excessive switching loss. The theoretical analysis has been verified by the double pulse test with a 1200-V/50-A SiC-based phase-leg power module.
[BibTeX]IET Generation, Transmission & Distribution2018
arrow_drop_downOwing to the recent power outages caused by extreme events, installing battery energy storage and backup generators is important to improve resiliency for a grid-tied microgrid. In the design stage, the event occurrence time and duration, which are highly uncertain and cannot be effectively predicted, may affect the needed battery and backup generator capacity but are usually assumed to be pre-determined in utility planning tools. This study investigates the optimal battery and backup generator sizing problem considering the stochastic event occurrence time and duration for the grid-tied microgrid under islanded operation. The reliability requirement is quantified by the mean value of the critical customer interruption time in each stochastic islanding time window (ITW), whose length is the duration and the centre is the occurrence time. The stochastic ITW constraint is then transformed to a probability-weighted expression to derive an equivalent Mixed Integer Linear Programming model. Numerical simulations on a realistic grid-tied PV-based microgrid demonstrate that the total cost is reduced by 11.5% considering the stochastic ITW, compared with the deterministic ITW under the same reliability requirement.
[BibTeX]IEEE Transactions on Power Electronics2018
arrow_drop_downWide bandgap semiconductors are gradually being adopted in high power-density high efficiency applications, providing faster switching and lower loss, and at the same time imposing new challenges in control and hardware design. In this paper, a gallium nitride-based Vienna-type rectifier with SiC diodes is proposed to serve as the power factor correction stage in a high-density battery charger system targeting for aircraft applications with 800 Hz ac system and 600 V level dc link, where power quality is required according to DO160E standard. To meet the current harmonic requirement, PWM voltage distortion during the turn-off transient, is studied as the main harmonics contributor. The distortion mechanism caused by different junction capacitances of the switching devices is presented. A mitigation scheme considering the nonlinear voltage-dependent characteristics of these capacitances is proposed and then simplified from a pulse-based turn-off compensation method to a general modulation scheme. Simulation and experimental results with a 450 kHz Vienna-type rectifier demonstrate the performance of the proposed approach, showing a THD reduction from 10% to 3% with a relatively low-speed controller.
[BibTeX]IEEE Transactions on Power Electronics2018
arrow_drop_downA transmission line emulator has been developed to flexibly represent interconnected ac lines under normal operating conditions in a voltage-source-converter-based power system emulation platform. As the most serious short-circuit fault condition, the three-phase short-circuit fault emulation is essential for power system studies. This paper proposes a model to realize a three-phase short-circuit fault emulation at different locations along a single transmission line or one of several parallel-connected transmission lines. At the same time, a combination method is proposed to eliminate the undesired transients caused by the current reference step changes while switching between the fault state and the normal state. Experiment results verify the developed transmission line three-phase short-circuit fault emulation capability.
[BibTeX]Chinese Journal of Electrical Engineering2018
arrow_drop_downA Hardware Testbed(HTB) is developed for accurate and flexible emulation and testing of electrical power system and their control, measurement, and protection systems. In the HTB, modular and programmable power electronics converters are used to mimic the static and dynamic characteristics of electrical power components. This paper overviews the development, integration, and application of the HTB, covering emulation principle, hardware and software configuration, and example results of power system research using the HTB. The advantages of the HTB, compared with real-time digital simulation and downscaled hardware-based testing platform are discussed.
[BibTeX]CPSS Transactions on Power Electronics and Applications2018
arrow_drop_downA systematic study on a gallium nitride (GaN) high-electron-mobility transistor (HEMT) based battery charger, consisting of a Vienna-type rectifier plus a dc-dc converter, reveals a common phenomenon. That is, the high switching frequency, and high di/dt and dv/dt noise inside GaN converters may induce a dc drift or low frequency distortion on sensing signals. The distortion mechanisms for different types of sensing errors are identified and practical minimization techniques are developed. Experimental results on the charger system have validated these mechanisms and corresponding approaches, showing an overall reduction of input current total harmonic distortion (THD) by up to 5 percentage points and improved dc-dc output voltage regulation accuracy. The knowledge helps engineers tackle the troublesome issues related to noise.
[BibTeX]IEEE Transactions on Industry Applications2018
arrow_drop_downThe series connection of insulated gate bipolar transistors (IGBTs) allows operation at voltage levels higher than the rated voltage of one IGBT and has less power semiconductor costs compared to multilevel topologies. However, voltage unbalance during the switching transient is a challenge for series-connected device application. This paper presents an field-programmable gate array (FPGA)-based voltage balancing strategy for multiseries-connected high-voltage (HV)-IGBTs including an FPGA-based active voltage balancing control (AVBC) circuit integrated into the gate driver and the control for multiseries-connected IGBTs. The effectiveness of the control has been experimentally validated in a prototype using four 4.5 kV HV-IGBTs in series connection.
[BibTeX]IEEE Transactions on Power Electronics2018
arrow_drop_downThe temperature-dependent characteristics of the third-generation 10-kV/20-A SiC MOSFET including the static characteristics and switching performance are carried out in this paper. The steady-state characteristics, including saturation current, output characteristics, antiparallel diode, and parasitic capacitance, are tested. A double pulse test platform is constructed including a circuit breaker and gate drive with >10-kV insulation and also a hotplate under the device under test for temperature-dependent characterization during switching transients. The switching performance is tested under various load currents and gate resistances at a 7-kV dc-link voltage from 25 to 125 C and compared with previous 10-kV MOSFETs. A simple behavioral model with its parameter extraction method is proposed to predict the temperature-dependent characteristics of the 10-kV SiC MOSFET. The switching speed limitations, including the reverse recovery of SiC MOSFET's body diode, overvoltage caused by stray inductance, crosstalk, heat sink, and electromagnetic interference to the control are discussed based on simulations and experimental results.
[BibTeX]IEEE Transactions on Industrial Electronics2018
arrow_drop_downThis paper proposes a simple and cost-effective current measurement technique for four-phase switched reluctance motor (SRM) control, by splitting the dual bus line of the converter, without pulse injection and voltage penalty. Only two Hall-effect sensors are utilized, where one is installed in the upper bus to measure two phase currents, and the other is placed in the lower bus to measure other two phase currents. In order to realize independent current measurement in the whole turn-on region, switching functions are redesigned so that upper switches of two phases act as the choppers, while lower switches of the other two phases are employed as the choppers. Compared to traditional drives, the developed system requires only two Hall-effect sensors in the dual bus line, without a need for individual phase sensors or additional devices, which reduces the cost and volume for SRM drives. Furthermore, compared to the single-sensor based current measurement scheme, the proposed method has no need to implement pulse injection and will not cause any voltage penalty and current distortion, which also improve the current measurement accuracy and system performance. Simulation and experiments carried out on a 150-W four-phase 8/6 SRM confirm the effectiveness of the proposed technique.
[BibTeX]IET Power Electronics2018
arrow_drop_downAs two exemplary candidates of wide-bandgap devices, SiC MOSFETs and GaN HEMTs are regarded as successors of Si devices in medium-to-high-voltage (>1200 V) and low-voltage (<;650 V) domains, respectively, thanks to their excellent switching performance and thermal capability. With the introduction of 650 V SiC MOSFETs and GaN HEMTs, the two technologies are in direct competition in <;650 V domains, such as Level 2 battery chargers for electric vehicles (EVs). This study applies 650 V SiC and GaN to two 240 VAC/7.2 kW EV battery chargers, respectively, aiming to provide a head-to-head comparison of these two devices in terms of overall efficiency, power density, thermal performance, and cost. The charger essentially is an indirect matrix converter with a dual-active-bridge stage handling the power factor correction and power delivery simultaneously. These two chargers utilise the same control strategy, varying the phase-shift and switching frequency to cover the wide input range (80-260 VAC) and wide output range (200 V-450 VDC). Experimental results indicated that at the same efficiency level, the GaN charger is smaller, more efficient and cheaper, while the SiC charger has a better thermal performance.
[BibTeX]IEEE Transactions on Power Electronics2018
arrow_drop_downThe hybrid electric bus (HEB) presents an emerging solution to exhaust gas emissions in urban transport. This paper proposes a multiport bidirectional switched reluctance motor (SRM) drive for solar-assisted HEB (SHEB) powertrain, which not only improves the motoring performance, but also achieves flexible charging functions. To extend the driving miles and achieve self-charging ability, photovoltaic (PV) panels are installed on the bus to decrease the reliance on fuelsbatteries and charging stations. A bidirectional front-end circuit with a PV-fed circuit is designed to integrate electrical components into one converter. Six driving and five charging modes are achieved. The dc voltage is boosted by the battery in generator control unit (GCU) driving mode and by the charge capacitor in battery driving mode, where the torque capability is improved. Usually, an extra converter is needed to achieve battery charging. In this paper, the battery can be directly charged by the demagnetization current in GCU or PV driving mode, and can be quickly charged by the PV panels and GCUAC grids at SHEB standstill conditions, by utilizing the traction motor windings and integrated converter circuit, without external charging converters. Experiments on a three-phase 128 SRM confirm the effectiveness of the proposed drive and control scheme.
[BibTeX]A high-frequency injection (HFI) sensorless control for interior permanent magnet synchronous motors with enhanced precision and widened speed range is proposed in this paper. The injection frequency reaches up to 2 kHz under a 50~100 kHz silicon carbide (SiC)-based three-phase inverter. In addition to the high switching frequency, the field-programmable gate array (FPGA) is utilized to achieve high control bandwidth (>200 kHz) when implementing the field-oriented control algorithm. The benefits of high switching frequency and high control bandwidth in senseless controls are explained theoretically, i.e., leaving enough room for the injection frequency by using SiC while tuning down the noise-to-signal ratio by using the FPGA. Experimental results verified that such manners improved the position estimation and lifted the injection frequency effectively, which further allows us to widen the motor speed range under the HFI sensorless control from 0 to 500 r/min with the conventional Si+DSP design to 0~1200 r/min with the proposed SiC+FPGA.
[BibTeX]Chinese Journal of Electrical Engineering2018
arrow_drop_downThis paper introduces the concept of modular design methodology for hardware design and development of motor drives. The modular design process is first introduced separating the hardware development into three parts: controller, mother board and phase-leg module. The control and circuit function can be decoupled from the phase-leg module development. The hardware update can be simplified with the phase-leg module development and verification. Two design examples are used to demonstrate this method: a DC-fed motor drive with Si IGBTs and an AC-fed motor drive with SiC devices. Design of DC-fed motor drive aims at developing the converter with customized IGBT package for high temperature. Experience with development of the converter with commercial IGBTs simplifies the process. As the AC-fed motor drive is a more complex topology using more advanced devices, the modular design method can simplify and improve the development especially for new packaged devices. Also, the modular design method can help to study the electromagnetic interference (EMI) issue for motor drives, which is presented with an extra design example.
[BibTeX]IEEE Transactions on Power Electronics2018
arrow_drop_downThis paper introduces series work of common-mode (CM) voltage reduction for the paralleled inverters. The paralleled inverters' phase-legs are connected through coupling inductors and the combined three-phase currents are provided to the load. Interleaving is an approach to reduce the CM voltage for the paralleled inverters but it cannot eliminate CM voltage. A novel pulse-width-modulation (PWM) method for paralleled inverters which can theoretically achieve zero CM voltage is developed. Considering the basic voltage vectors in each inverter, novel paralleled voltage vectors which have zero CM voltage are proposed to combine the reference voltage vector. The action time's distribution and voltage vectors' sending sequence for each inverter are also introduced. The proposed PWM method can make sure the voltage of the two inverters are balanced in each switching cycle and limits the circulating current through small coupling inductors. Similar to interleaving space vector PWM, the proposed zero CM PWM also has the ability to reduce the output current ripple and electromagnetic interference (EMI). Simulation and experimental results are provided to show the advantage of paralleled inverters in CM voltage reduction and validate the proposed method has good performance to reduce CM current and CM EMI noise.
[BibTeX]CPSS Transactions on Power Electronics and Applications2018
arrow_drop_downThe emergence of wide bandgap (WBG) semiconductor devices such as silicon carbide (SiC) and gallium nitride (GaN) devices promises to revolutionize next-generation power electronics converters. Featuring high breakdown electric field, low specific on-resistance, fast switching speed, and high junction temperature capability, these devices are beneficial for the efficiency, power density, reliability, and/or cost of power electronics converters. WBG devices have been employed in some commercial and industrial products with more applications expected in near future. However, extremely fast switching and other superior characteristics of WBG device, and high switching frequency/high voltage/high junction temperature operation, present new design challenges in gate drive and protection, packaging and layout, EMI suppression, and converter control, etc. Addressing these design and application issues is critical to the adoption, commercialization, and success of WBG based power electronics. This special issue intends to report the latest progress in these important areas.
[BibTeX]A high-frequency injection (HFI) sensorless control for interior permanent magnet synchronous motors with enhanced precision and widened speed range is proposed in this paper. The injection frequency reaches up to 2 kHz under a 50~100 kHz silicon carbide (SiC)-based three-phase inverter. In addition to the high switching frequency, the field-programmable gate array (FPGA) is utilized to achieve high control bandwidth (>200 kHz) when implementing the field-oriented control algorithm. The benefits of high switching frequency and high control bandwidth in senseless controls are explained theoretically, i.e., leaving enough room for the injection frequency by using SiC while tuning down the noise-to-signal ratio by using the FPGA. Experimental results verified that such manners improved the position estimation and lifted the injection frequency effectively, which further allows us to widen the motor speed range under the HFI sensorless control from 0 to 500 r/min with the conventional Si+DSP design to 0~1200 r/min with the proposed SiC+FPGA.
[BibTeX]Chinese Journal of Electrical Engineering2018
arrow_drop_downThis paper introduces the concept of modular design methodology for hardware design and development of motor drives. The modular design process is first introduced separating the hardware development into three parts: controller, mother board and phase-leg module. The control and circuit function can be decoupled from the phase-leg module development. The hardware update can be simplified with the phase-leg module development and verification. Two design examples are used to demonstrate this method: a DC-fed motor drive with Si IGBTs and an AC-fed motor drive with SiC devices. Design of DC-fed motor drive aims at developing the converter with customized IGBT package for high temperature. Experience with development of the converter with commercial IGBTs simplifies the process. As the AC-fed motor drive is a more complex topology using more advanced devices, the modular design method can simplify and improve the development especially for new packaged devices. Also, the modular design method can help to study the electromagnetic interference (EMI) issue for motor drives, which is presented with an extra design example.
[BibTeX]IEEE Transactions on Power Electronics2018
arrow_drop_downThis paper introduces series work of common-mode (CM) voltage reduction for the paralleled inverters. The paralleled inverters' phase-legs are connected through coupling inductors and the combined three-phase currents are provided to the load. Interleaving is an approach to reduce the CM voltage for the paralleled inverters but it cannot eliminate CM voltage. A novel pulse-width-modulation (PWM) method for paralleled inverters which can theoretically achieve zero CM voltage is developed. Considering the basic voltage vectors in each inverter, novel paralleled voltage vectors which have zero CM voltage are proposed to combine the reference voltage vector. The action time's distribution and voltage vectors' sending sequence for each inverter are also introduced. The proposed PWM method can make sure the voltage of the two inverters are balanced in each switching cycle and limits the circulating current through small coupling inductors. Similar to interleaving space vector PWM, the proposed zero CM PWM also has the ability to reduce the output current ripple and electromagnetic interference (EMI). Simulation and experimental results are provided to show the advantage of paralleled inverters in CM voltage reduction and validate the proposed method has good performance to reduce CM current and CM EMI noise.
[BibTeX]CPSS Transactions on Power Electronics and Applications2018
arrow_drop_downThe emergence of wide bandgap (WBG) semiconductor devices such as silicon carbide (SiC) and gallium nitride (GaN) devices promises to revolutionize next-generation power electronics converters. Featuring high breakdown electric field, low specific on-resistance, fast switching speed, and high junction temperature capability, these devices are beneficial for the efficiency, power density, reliability, and/or cost of power electronics converters. WBG devices have been employed in some commercial and industrial products with more applications expected in near future. However, extremely fast switching and other superior characteristics of WBG device, and high switching frequency/high voltage/high junction temperature operation, present new design challenges in gate drive and protection, packaging and layout, EMI suppression, and converter control, etc. Addressing these design and application issues is critical to the adoption, commercialization, and success of WBG based power electronics. This special issue intends to report the latest progress in these important areas.
[BibTeX]IEEE Transactions on Cloud Computing2017
arrow_drop_downAs one of the most popular cloud services, data storage has attracted great attention in recent research efforts. Key-value (k-v) stores have emerged as a popular option for storing and querying billions of key-value pairs. So far, existing methods have been deterministic. Providing such accuracy, however, comes at the cost of memory and CPU time. In contrast, we present an approximate k-v storage for cloud-based systems that is more compact than existing methods. The tradeoff is that it may, theoretically, return errors. Its design is based on the probabilistic data structure called “bloom filter”, where we extend the classical bloom filter to support key-value operations. We call the resulting design as the kBF (key-value bloom filter). We further develop a distributed version of the kBF (d-kBF) for the unique requirements of cloud computing platforms, where multiple servers cooperate to handle a large volume of queries in a load-balancing manner. Finally, we apply the kBF to a practical problem of implementing a state machine to demonstrate how the kBF can be used as a building block for more complicated software infrastructures.
[BibTeX]IEEE Transactions on Power Electronics2017
arrow_drop_downThis paper presents an intelligent gate drive for silicon carbide (SiC) devices to fully utilize their potential of high switching-speed capability in a phase-leg configuration. Based on the SiC device's intrinsic properties, a gate assist circuit consisting of two auxiliary transistors with two diodes is introduced to actively control gate voltages and gate loop impedances of both devices in a phase-leg configuration during different switching transients. Compared to conventional gate drives, the proposed circuit has the capability of accelerating the switching speed of the phase-leg power devices and suppressing the crosstalk to below device limits. Based on Wolfspeed 1200-V SiC MOSFETs, the test results demonstrate the effectiveness of this intelligent gate drive under varying operating conditions. More importantly, the proposed intelligent gate assist circuitry is embedded into a gate drive integrated circuit, offering a simple, compact, and reliable solution for end-users to maximize benefits of SiC devices in actual power electronics applications.
[BibTeX]IEEE Transactions on Power Electronics2017
arrow_drop_downWith the increased cloud computing and digital information storage, the energy requirement of data centers keeps increasing. A high-voltage point of load (HV POL) with an input series output parallel structure is proposed to convert 400 to 1 VDC within a single stage to increase the power conversion efficiency. The symmetrical controlled half-bridge current doubler is selected as the converter topology in the HV POL. A load-dependent soft-switching method has been proposed with an auxiliary circuit that includes inductor, diode, and MOSFETs so that the hard-switching issue of typical symmetrical controlled half-bridge converters is resolved. The operation principles of the proposed soft-switching half-bridge current doubler have been analyzed in detail. Then, the necessity of adjusting the timing with the loading in the proposed method is analyzed based on losses, and a controller is designed to realize the load-dependent operation. A lossless RCD current sensing method is used to sense the output inductor current value in the proposed load-dependent operation. Experimental efficiency of a hardware prototype is provided to show that the proposed method can increase the converter's efficiency in both heavy- and light-load conditions.
[BibTeX]IEEE Transactions on Power Electronics2017
arrow_drop_downDead time significantly affects the reliability, power quality, and efficiency of voltage-source converters. For silicon carbide (SiC) devices, considering the high sensitivity of turn-off time to the operating conditions (> 5× difference between light load and full load) and characteristics of inductive loads (> 2× difference between motor load and inductor), as well as large additional energy loss induced by the freewheeling diode conduction during the superfluous dead time (~15% of the switching loss), then the traditional fixed dead time setting becomes inappropriate. This paper introduces an approach to adaptively regulate the dead time considering the current operating condition and load characteristics via synthesizing online monitored turn-off switching parameters in the microcontroller with an embedded preset optimization model. Based on a buck converter built with 1200-V SiC MOSFETs, the experimental results show that the proposed method is able to ensure reliability and reduce power loss by 12% at full load and 18.2% at light load (8% of the full load in this case study).
[BibTeX]IEEE Transactions on Power Electronics2017
arrow_drop_downThis paper develops a synchronous generator emulator by using a three-phase voltage source converter for transmission level power system testing. Different interface algorithms are compared, and the voltage type ideal transformer model is selected considering accuracy and stability. At the same time, closed-loop voltage control with current feed-forward is proposed to decrease the emulation error. The emulation is then verified through two different ways. First, the output waveforms of the emulator in experiments are compared with the simulation under the same condition. Second, a transfer function perturbation-based error model is obtained and redefined as the relative error for the amplitude and phase between the emulated and the target system over the frequency range of interest. The major cause of the error is investigated through a quantitative analysis of the error with varying parameters.
[BibTeX]IEEE Transactions on Power Electronics2017
arrow_drop_downThis paper presents a steady-state model of MMC for the second-order phase voltage ripple prediction under unbalanced conditions, taking the impact of negative-sequence current control into account. From the steady-state model, a circular relationship is found among current and voltage quantities, which can be used to evaluate the magnitudes and initial phase angles of different circulating current components. Moreover, in order to calculate the circulating current in a point-to-point MMC-based HVdc system under unbalanced grid conditions, the derivation of equivalent dc impedance of an MMC is discussed as well. According to the dc impedance model, an MMC inverter can be represented as a series connected R-L-C branch, with its equivalent resistance and capacitance directly related to the circulating current control parameters. Experimental results from a scaled-down three-phase MMC system under an emulated single-line-to-ground fault are provided to support the theoretical analysis and derived model. This new models provides an insight into the impact of different control schemes on the fault characteristics and improves the understanding of the operation of MMC under unbalanced conditions.
[BibTeX]IEEE Transactions on Power Electronics2017
arrow_drop_downThe double pulse test (DPT) is a widely accepted method to evaluate the dynamic behavior of power devices. Considering the high switching-speed capability of wide band-gap devices, the test results are very sensitive to the alignment of voltage and current (V-I) measurements. Also, because of the shoot-through current induced by Cdv/dt (i.e., cross-talk), the switching losses of the nonoperating switch device in a phase-leg must be considered in addition to the operating device. This paper summarizes the key issues of the DPT, including components and layout design, measurement considerations, grounding effects, and data processing. Additionally, a practical method is proposed for phase-leg switching loss evaluation by calculating the difference between the input energy supplied by a dc capacitor and the output energy stored in a load inductor. Based on a phase-leg power module built with 1200-V/50-A SiC MOSFETs, the test results show that this method can accurately evaluate the switching loss of both the upper and lower switches by detecting only one switching current and voltage, and it is immune to V-I timing misalignment errors.
[BibTeX]IEEE Transactions on Power Electronics2017
arrow_drop_downThis paper presents the development of a scaled four-terminal high-voltage direct current (HVDC) testbed, including hardware structure, communication architecture, and different control schemes. The developed testbed is capable of emulating typical operation scenarios including system start-up, power variation, line contingency, and converter station failure. Some unique scenarios are also developed and demonstrated, such as online control mode transition and station re-commission. In particular, a dc line current control is proposed, through the regulation of a converter station at one terminal. By controlling a dc line current to zero, the transmission line can be opened by using relatively low-cost HVDC disconnects with low current interrupting capability, instead of the more expensive dc circuit breaker. Utilizing the dc line current control, an automatic line current limiting scheme is developed. When a dc line is overloaded, the line current control will be automatically activated to regulate current within the allowable maximum value.
[BibTeX]IEEE Transactions on Industrial Electronics2017
arrow_drop_downSmall-signal stability is an important concern in three-phase inverter-based ac power systems. The impedance-based approach based on the generalized Nyquist stability criterion (GNC) can analyze the stability related with the medium and high-frequency modes of the systems. However,. the GNC involves the right-half-plane (RHP) pole calculation of return-ratio transfer function matrices, which cannot be avoided for stability analysis of complicated ac power systems. Therefore, it necessitates the detailed internal control information of the inverters, which is not normally available for commercial inverters. To address this issue, this paper introduces the component connection method (CCM) in the frequency domain for stability analysis in the synchronous d-q frame, by proposing a method of deriving the impedance matrix of the connection networks of inverter-based ac power systems. Demonstration on a two-area system and a microgrid shows that: The CCM-enabled approach can avoid the RHP pole calculation of return-ratio matrices and enables the stability analysis by using only the impedances of system components, which could be measured without the need for the internal information. A stability analysis method based on d-q impedances, the CCM, and the determinant-based GNC is also proposed to further simplify the analysis process. Inverter controller parameters can be designed as stability regions in parameter spaces, by repetitively applying the proposed stability analysis method. Simulation and experimental results verify the validity of the proposed stability analysis method and the parameter design approach.
[BibTeX]IEEE Transactions on Power Electronics2017
arrow_drop_downHybrid ac/dc transmission extends the power transfer capacity of existing long ac lines closer to their thermal limit, by superposing the dc current onto three-phase ac lines through a zigzag transformer. However, this transformer could suffer saturation under unbalanced line impedance conditions. This paper introduces the concept of hybrid line impedance conditioner (HLIC) as a cost-effective approach to compensate for the line unbalance and therefore avoid saturation. The topology and operation principle are presented. The two-level control strategy is described, which enables autonomous adaptive regulation without the need of system-level control. Design and implementation are also analyzed, including dc-link capacitance as one of the key line conditioner components, HLIC installation, and protection under fault conditions. The cost study on this HLIC-based hybrid system is also performed to reveal the benefits of the solution. Simulation results and experimental results based on a down-scaled prototype are provided to verify the feasibility of the proposed approach.
[BibTeX]Virtual Synchronous Generator Control of Full Converter Wind Turbines With Short-Term Energy StorageIEEE Transactions on Industrial Electronics2017
arrow_drop_downOne way to incorporate the increasing amount of wind penetration is to control wind turbines to emulate the behavior of conventional synchronous generators. However, the energy balance is the main issue for the wind turbines to be truly dispatchable by the power system operator such as the generators. This paper presents a comprehensive virtual generator control method for the full converter wind turbine, with a minute-level energy storage in the dc link as the energy buffer. The voltage closed-loop virtual synchronous generator control of the wind turbine allows it to work under both grid-connected and stand-alone condition. Power balance of the wind turbine system is achieved by controlling the rotor speed of the turbine according to the loading condition. With the proposed control, the wind turbine system can enhance the dynamic response, and can be dispatched and regulated by the system operator. The sizing design of the short term energy storage is also discussed in this paper. Experimental results are presented to demonstrate the feasibility and effectiveness of the proposed control method.
[BibTeX]IEEE Transactions on Power Electronics2017
arrow_drop_downNewly emerged gallium nitride (GaN) devices feature ultrafast switching speed and low on-state resistance that potentially provide significant improvements for power converters. This paper investigates the benefits of GaN devices in an LLC resonant converter and quantitatively evaluates GaN devices' capabilities to improve converter efficiency. First, the relationship of device and converter design parameters to the device loss is established based on an analytical model of LLC resonant converter operating at the resonance. Due to the low effective output capacitance of GaN devices, the GaN-based design demonstrates about 50% device loss reduction compared with the Si-based design. Second, a new perspective on the extra transformer winding loss due to the asymmetrical primary-side and secondary-side current is proposed. The device and design parameters are tied to the winding loss based on the winding loss model in the finite element analysis (FEA) simulation. Compared with the Si-based design, the winding loss is reduced by 18% in the GaN-based design. Finally, in order to verify the GaN device benefits experimentally, 400- to 12-V, 300-W, 1-MHz GaN-based and Si-based LLC resonant converter prototypes are built and tested. One percent efficiency improvement, which is 24.8% loss reduction, is achieved in the GaN-based converter.
[BibTeX]CES Transactions on Electrical Machines and Systems2017
arrow_drop_downResearch on high voltage (HV) silicon carbide (SiC) power semiconductor devices has attracted much attention in recent years. This paper overviews the development and status of HV SiC devices. Meanwhile, benefits of HV SiC devices are presented. The technologies and challenges for HV SiC device application in converter design are discussed. The state-of-the-art applications of HV SiC devices are also reviewed.
[BibTeX]IEEE Transactions on Power Electronics2017
arrow_drop_downThree-phase inverter-based multibus ac power systems could suffer from the harmonic instability issue. The existing impedance-based stability analysis method using the Nyquist stability criterion once requires the calculation of right-half-plane (RHP) poles of impedance ratios, which would result in a heavy computation burden for complicated systems. In order to analyze the harmonic stability of multibus ac systems consisting of both voltage-controlled and current-controlled inverters without the need for RHP pole calculation, this paper proposes two sequence-impedance-based harmonic stability analysis methods. Based on the summary of all major connection types including mesh, the proposed Method 1 can analyze the harmonic stability of multibus ac systems by adding the components one by one from nodes in the lowest level to areas in the highest system level, and accordingly, applying the stability criteria multiple times in succession. The proposed Method 2 is a generalized extension of the impedance-sum-type criterion to be used for the harmonic stability analysis of any multibus ac systems based on Cauchy's theorem. The inverter controller parameters can be designed in the forms of stability regions in the parameter space, by repetitively applying the proposed harmonic stability analysis methods. Experimental results of inverter-based multibus ac systems validate the effectiveness of the proposed harmonic stability analysis methods and parameter design approach.
[BibTeX]IEEE Journal of Emerging and Selected Topics in Power Electronics2017
arrow_drop_downArm inductor in a modular multilevel converter (MMC) is used to limit the circulating current and dc short circuit fault current. The circulating current in MMC is dominated by second-order harmonic, which can be largely reduced with circulating current suppressing control. By analyzing the mechanism of the circulating current suppressing control, it is found that the circulating current at switching frequency becomes the main harmonic when suppression control is implemented. Unlike the second-order harmonic that circulates only within the three phases, switching frequency harmonic also flows through the dc side and may further cause high-frequency dc voltage harmonic. This paper develops the theoretical relationship between the arm inductance and switching frequency circulating current, which can be used to guide the arm inductance selection. The experimental results with a downscaled MMC prototype verify the existence of the switching frequency circulating current and its relationship with arm inductance.
[BibTeX]IEEE Transactions on Industrial Electronics2017
arrow_drop_downMultifrequency wireless power transfer (WPT) is advantageous in facilitating compatibility with different WPT standards. However, implementing a multifrequency transmitter often requires compromises in system size, complexity, power transfer capability, or output regulation. In this paper, a single-inverter-based dual-mode WPT system is proposed. The system employs a multifrequency programmed pulse width modulation scheme. This multifrequency modulated inverter can simultaneously generate and regulate 100-kHz and 6.78-MHz outputs, or multiple frequencies within ranges of 87-300 kHz, which facilitates the development of multistandard WPT technology for consumer electronics. The principle of the proposed modulation is illustrated, where two different frequencies are concurrently modulated using a programmed pulse train of square waveforms for power delivery, while eliminating certain harmonics. Design tradeoffs and constraints are examined through analytical circuit models. Finally, experimental results are provided to verify the method on a gallium-nitride-based WPT prototype.
[BibTeX]IEEE Transactions on Power Electronics2016
arrow_drop_downThis paper presents a comprehensive short-circuit ruggedness evaluation and numerical investigation of up-to-date commercial silicon carbide (SiC) MOSFETs. The short-circuit capability of three types of commercial 1200-V SiC MOSFETs is tested under various conditions, with case temperatures from 25 to 200 °C and dc bus voltages from 400 to 750 V. It is found that the commercial SiC MOSFETs can withstand short-circuit current for only several microseconds with a dc bus voltage of 750 V and case temperature of 200 °C. The experimental short-circuit behaviors are compared, and analyzed through numerical thermal dynamic simulation. Specifically, an electrothermal model is built to estimate the device internal temperature distribution, considering the temperature-dependent thermal properties of SiC material. Based on the temperature information, a leakage current model is derived to calculate the main leakage current components (i.e., thermal, diffusion, and avalanche generation currents). Numerical results show that the short-circuit failure mechanisms of SiC MOSFETs can be thermal generation current induced thermal runaway or high-temperature-related gate oxide damage.
[BibTeX]IEEE Journal of Emerging and Selected Topics in Power Electronics2016
arrow_drop_downHigh power density is a desirable feature of power electronics design, which prompts economic incentives for industrial applications. In this paper, a gallium nitride (GaN)-based 2-kVA single-phase inverter design was developed for the Google Little Box Challenge, which achieves a 102-W/in3 power density. First, the static and dynamic temperature-dependent characteristics of multiple SiC and enhancement-mode GaN FETs are investigated and compared. Based on the device testing results, several topologies of the inverter stage and different power decoupling solutions are compared with respect to the device volume, efficiency, and thermal requirements. Moreover, some design approaches for magnetic devices and the implementation of gate drives for GaN devices are discussed in this paper, which enable a compact and robust system. Finally, a dc notch filter and a hard switching full-bridge converter are combined as the proposed design for the prototype. A 2-kVA prototype is demonstrated, which meets the volume, efficiency, and thermal requirements. The performance of the prototype is verified by the experimental results.
[BibTeX]IEEE Transactions on Power Electronics2016
arrow_drop_downA hardware testbed platform emulating multiple-area power system scenario dynamics has been established aiming at multiple time-scale real-time emulations. In order to mimic real power flow situations in the utility system, the load emulators have to behave like real ones in both their static and dynamic characteristics. A constant-impedance, constant-current, and constant-power (ZIP) model has been used for static load types, while a three-phase induction motor model has been built to represent dynamic load types. In this paper, ways of modeling ZIP and induction motor loads and the performance of each load emulator are discussed. Comparisons between simulation and experimental results are shown as well for the validation of the emulator behaviors. A real-time composite power load emulator is then demonstrated with desired characteristics and detailed transients for representing a power system PQ bus dynamics.
[BibTeX]IEEE Journal of Emerging and Selected Topics in Power Electronics2016
arrow_drop_downGallium nitride (GaN) heterojunction field-effect transistors are an enabling technology for high-density converter design. This paper proposes a three-level dc-dc converter with dual outputs based on enhancement-mode GaN devices, intended for use as a battery charger in aircraft applications. The charger can output either 28 or 270 V, selected with a jumper, to satisfy the two most common dc bus voltage requirements in airplanes. It operates as an LLC converter in the 28 V mode and as a buck converter in the 270 V mode. In both operation modes, the devices can realize zero voltage switching (ZVS). With the chosen modulation method, the converter can realize automatic voltage balancing of the flying capacitor and the frequency doubling function to act as an interleaved converter. For the LLC mode, the resonant frequency is twice the switching frequency of primary-side switches, and for the buck mode, the frequency of the output inductor current is also twice the switching frequency. This helps to reduce the size of magnetics while maintaining a low switching loss. Also, the converter utilizes a matrix transformer, with resonant parameters designed to reduce conduction loss and avoid ZVS failure. The operating principle of the converter is analyzed and then experimentally verified on a 1.5-kW prototype with 1 MHz resonant frequency.
[BibTeX]IEEE Journal of Emerging and Selected Topics in Power Electronics2016
arrow_drop_downGallium nitride (GaN) power devices are an emerging technology that have only recently become available commercially. This new technology enables the design of converters at higher frequencies and efficiencies than those achievable with conventional Si devices. This paper reviews the characteristics and commercial status of both vertical and lateral GaN power devices, providing the background necessary to understand the significance of these recent developments. In addition, the challenges encountered in GaN-based converter design are considered, such as the consequences of faster switching on gate driver design and board layout. Other issues include the unique reverse conduction behavior, dynamic Rds,on, breakdown mechanisms, thermal design, device availability, and reliability qualification. This review will help prepare the reader to effectively design GaN-based converters, as these devices become increasingly available on a commercial scale.
[BibTeX]IEEE Transactions on Power Electronics2016
arrow_drop_downVoltage-balancing control in a modular multilevel converter (MMC) impacts not only the voltage difference among submodule capacitors, but also the power device switching patterns. As a result, MMC possesses a nondeterministic switching pattern and its switching frequency is no longer an independent parameter. This paper theoretically investigates how voltage-balancing control influences the switching frequency in the MMC. Equations describing the relationship between the submodule capacitor unbalanced voltage and converter switching frequency are derived. Since unbalanced voltage also impacts the submodule capacitor ripple voltage and voltage/current harmonics, the design interaction between switching frequency and submodule capacitance, as well as the selection of unbalanced voltage are further investigated. Both simulation and experimental verifications are provided.
[BibTeX]CPSS Transactions on Power Electronics and Applications2016
arrow_drop_downThis paper overviews the silicon carbide (SiC) technology. The focus is on the benefits of SiC based power electronics for converters and systems, as well as their ability in enabling new applications. The challenges and research trends on the design and application of SiC power electronics are also discussed.
[BibTeX]IEEE Transactions on Power Electronics2016
arrow_drop_downElectric-drive vehicles, including hybrid, plug-in hybrid, and electric vehicles, require a high-voltage (HV) battery pack for propulsion and a low-voltage (LV) dc bus for auxiliary loads. This paper presents an architecture that uses modular dc-dc bypass converters to perform active battery cell balancing and to supply current to auxiliary loads, eliminating the need for a separate HV-to-LV high step-down dc-dc converter. The modular architecture, which achieves continuous balancing of all cells, can be used with an arbitrary number of cells in series, requires no control communication between converters, and naturally shares the auxiliary load current according to the relative state-of-charge (SOC) and capacities of the battery cells. Design and control details are provided for LV low-power dual active bridge (DAB) power converters serving as the bypass converter modules. Furthermore, current sharing is examined and worst-case SOC and current deviations are derived for mismatches in cell capacities, SOCs, and parasitic resistances. Experimental results are presented for a system consisting of 21 series 25 Ah Panasonic lithium-ion NMC battery cells and 21 DAB bypass converters, with combined outputs rated to supply a 650-W auxiliary load.
[BibTeX]IEEE Transactions on Power Electronics2016
arrow_drop_downThe three-phase current source rectifier (CSR) features a step-down ac-dc voltage conversion function, smaller ac filter size compared with the traditional two-level voltage source rectifier, and inrush current limiting capability. However, large conduction loss of semiconductor devices has limited the wide application of traditional CSRs. In this paper, a new CSR topology, delta-type current source rectifier (DCSR), is proposed to reduce the conduction loss. The proposed rectifier has delta-type connections on its ac input side and its dc-link current can be shared by multiple devices at a given time. This paper introduces the DCSR's operation principle, modulation scheme, and design method. Based on the analysis, the conduction loss can be reduced by up to 20% with the proposed topology. An 8-kW prototype is then built to experimentally verify the performance of the DCSR.
[BibTeX]IEEE Transactions on Power Electronics2016
arrow_drop_downElectric-drive vehicles, including hybrid, plug-in hybrid, and electric vehicles, require a high-voltage (HV) battery pack for propulsion and a low-voltage (LV) dc bus for auxiliary loads. This paper presents an architecture that uses modular dc-dc bypass converters to perform active battery cell balancing and to supply current to auxiliary loads, eliminating the need for a separate HV-to-LV high step-down dc-dc converter. The modular architecture, which achieves continuous balancing of all cells, can be used with an arbitrary number of cells in series, requires no control communication between converters, and naturally shares the auxiliary load current according to the relative state-of-charge (SOC) and capacities of the battery cells. Design and control details are provided for LV low-power dual active bridge (DAB) power converters serving as the bypass converter modules. Furthermore, current sharing is examined and worst-case SOC and current deviations are derived for mismatches in cell capacities, SOCs, and parasitic resistances. Experimental results are presented for a system consisting of 21 series 25 Ah Panasonic lithium-ion NMC battery cells and 21 DAB bypass converters, with combined outputs rated to supply a 650-W auxiliary load.
[BibTeX]IEEE Transactions on Power Electronics2016
arrow_drop_downThe three-phase current source rectifier (CSR) features a step-down ac-dc voltage conversion function, smaller ac filter size compared with the traditional two-level voltage source rectifier, and inrush current limiting capability. However, large conduction loss of semiconductor devices has limited the wide application of traditional CSRs. In this paper, a new CSR topology, delta-type current source rectifier (DCSR), is proposed to reduce the conduction loss. The proposed rectifier has delta-type connections on its ac input side and its dc-link current can be shared by multiple devices at a given time. This paper introduces the DCSR's operation principle, modulation scheme, and design method. Based on the analysis, the conduction loss can be reduced by up to 20% with the proposed topology. An 8-kW prototype is then built to experimentally verify the performance of the DCSR.
[BibTeX]IEEE Transactions on Power Electronics2015
arrow_drop_downDouble pulse test (DPT) is a widely accepted method to evaluate the switching characteristics of semiconductor switches, including SiC devices. However, the observed switching performance of SiC devices in a PWM inverter for induction motor drives is almost always worse than the DPT characterization, with slower switching speed, more switching losses, and more serious parasitic ringing. This paper systematically investigates the factors that limit the SiC switching performance from both the motor side and inverter side, including the load characteristics of induction motor and power cable, two more phase legs for the three-phase PWM inverter in comparison with the DPT, and the parasitic capacitive coupling effect between power devices and heat sink. Based on a three-phase PWM inverter with 1200 V SiC MOSFETs, test results show that the induction motor, especially with a relatively long power cable, will significantly impact the switching performance, leading to a switching time increase by a factor of 2, switching loss increase up to 30% in comparison with that yielded from DPT, and serious parasitic ringing with 1.5 μs duration, which is more than 50 times of the corresponding switching time. In addition, the interactions among the three phase legs cannot be ignored unless the decoupling capacitors are mounted close to each phase leg to support the dc bus voltage during switching transients. Also, the coupling capacitance due to the heat sink equivalently increases the junction capacitance of power devices; however, its influence on the switching behavior in the motor drives is small considering the relatively large capacitance of the motor load.
[BibTeX]IEEE Transactions on Smart Grid2015
arrow_drop_downWith the emerging area of smart grids, one critical challenge faced by administrators of wide-area measurement systems is to analyze and model streaming data with limited resources on their embedded controllers. Usually, streaming data can be modeled as a multiset where each data item has its own frequency. In this paper, we study the problem on how to generate histograms of data items based on their frequency, so we can identify various issues such as power line tripping or line faults under constraints. The primary challenge for achieving this goal using conventional methods is that keeping an individual counter for each unique type of data is too memory-consuming, slow, and costly. In this paper, we describe a novel data structure and its associated algorithms, called the loglog bloom filter, for this purpose. This data structure extends the classical bloom filter with a recent technique called probabilistic counting, so it can effectively generate histograms for streaming data in one pass with sub-linear overhead. Therefore, this method is suitable for data processing in smart grids, where limited computational resources are available on the controllers. We analyze the performance, trade-offs, and capacity of this data structure, and evaluate it with real data traces collected through the frequency disturbance recorders deployed for the FNET/GridEye infrastructure. We demonstrate that this method can identify the frequencies of all unique items with high accuracy and low memory overhead, so that data outliers can be conveniently identified.
[BibTeX]IEEE Transactions on Power Electronics2015
arrow_drop_downThis paper presents the analysis and control of a multilevel modular converter (MMC)-based HVDC transmission system under three possible single-line-to-ground fault conditions, with special focus on the investigation of their different fault characteristics. Considering positive-, negative-, and zero-sequence components in both arm voltages and currents, the generalized instantaneous power of a phase unit is derived theoretically according to the equivalent circuit model of the MMC under unbalanced conditions. Based on this model, a novel double-line frequency dc-voltage ripple suppression control is proposed. This controller, together with the negative- and zero-sequence current control, could enhance the overall fault-tolerant capability of the HVDC system without additional cost. To further improve the fault-tolerant capability, the operation performance of the HVDC system with and without single-phase switching is discussed and compared in detail. Simulation results from a three-phase MMC-HVDC system generated with MATLAB/Simulink are provided to support the theoretical analysis and proposed control schemes.
[BibTeX]IEEE Transactions on Power Electronics2015
arrow_drop_downThis paper presents a board-level integrated silicon carbide (SiC) mosfet power module for high temperature and high power density application. Specifically, a silicon-on-insulator (SOI)-based gate driver capable of operating at 200 °C ambient temperature is designed and fabricated. The sourcing and sinking current capability of the gate driver are tested under various ambient temperatures. Also, a 1200 V/100 A SiC mosfet phase-leg power module is developed utilizing high temperature packaging technologies. The static characteristics, switching performance, and short-circuit behavior of the fabricated power module are fully evaluated at different temperatures. Moreover, a buck converter prototype composed of the SOI gate driver and SiC power module is built for high temperature continuous operation. The converter is operated at different switching frequencies up to 100 kHz, with its junction temperature monitored by a thermosensitive electrical parameter and compared with thermal simulation results. The experimental results from the continuous operation demonstrate the high temperature capability of the power module at a junction temperature greater than 225 °C.
[BibTeX]IEEE Transactions on Power Electronics2015
arrow_drop_downReliability of power converters and lifetime prediction has been a major topic of research in the last few decades, especially for traction applications. The main failures in high power semiconductors are caused by thermomechanical fatigue. Power cycling and temperature cycling are the two most common thermal acceleration tests used in assessing reliability. The objective of this paper is to study the various power cycling tests found in the literature and to develop generalized steps in planning application specific power cycling tests. A comparison of different tests based on the failures, duration, test circuits, and monitored electrical parameters is presented.
[BibTeX]IEEE Transactions on Power Electronics2015
arrow_drop_downThe three-phase buck-type rectifier features a step-down ac-dc conversion function, smaller filter size, inrush current limiting capability, and potential for high efficiency, where its switching loss is dependent on the modulation scheme and the specific semiconductors used. In this paper, three different device combinations are compared through experiments on their switching characteristics for the buck rectifier application. It is shown that the switching performance of two series-connected devices becomes worse than a single device due to the superposition of the nonideal semiconductor characteristics. Moreover, the switching loss in the commutation between two switches is usually higher than the one in the commutation between a switch and the freewheeling diode. Taking into consideration both types of commutations, the switching loss of the buck rectifier is then modeled and the analytical equations are derived for four space vector modulation schemes. According to the analysis, each modulation scheme has its own field for high-efficiency application. The most advantageous modulation scheme is identified in this paper for each of the device combinations investigated.
[BibTeX]IEEE Transactions on Power Electronics2015
arrow_drop_downNonlinear, voltage-dependent capacitances of power semiconductor devices are capable of having significant impact on the operation of switched-mode power converters. Particularly at high switching frequency, these nonlinearities play a significant role in determining switching times, losses, and converter dynamics during switching transitions. In order to accommodate the well-established design and analysis techniques commonly used for linear circuits, this paper examines the nonlinear voltage-dependence of switching device capacitances and proposes a circuit-oriented analysis technique that allows the parasitic capacitances to be replaced with linear equivalents. The multitude of developed equivalents are verified through full nonlinear simulation in both MATLAB/Simulink and SPICE, as well as through experimental results.
[BibTeX]IEEE Transactions on Smart Grid2015
arrow_drop_downThis paper presents the design and implementation of a single-phase on-board bidirectional plug-in electric vehicle (PEV) charger that can provide reactive power support to the utility grid in addition to charging the vehicle battery. The topology consists of two-stages: a full-bridge ac-dc boost converter; and a half-bridge bidirectional dc-dc converter. The charger operates in two quadrants in the active-reactive power (PQ) power plane with five different operation modes (i.e., charging-only, charging-capacitive, charging-inductive, capacitive-only, and inductive-only). This paper also presents a unified controller to follow utility PQ commands in a smart grid environment. The cascaded two-stage system controller receives active and reactive power commands from the grid, and results in line current and battery charging current references while also providing a stable dynamic response. The vehicle's battery is not affected during reactive power operation in any of the operation modes. Testing the unified system controller with a 1.44 kVA experimental charger design demonstrates the successful implementation of reactive power support functionality of PEVs for future smart grid applications.
[BibTeX]IEEE Transactions on Power Electronics2015
arrow_drop_downNonlinear, voltage-dependent capacitances of power semiconductor devices are capable of having significant impact on the operation of switched-mode power converters. Particularly at high switching frequency, these nonlinearities play a significant role in determining switching times, losses, and converter dynamics during switching transitions. In order to accommodate the well-established design and analysis techniques commonly used for linear circuits, this paper examines the nonlinear voltage-dependence of switching device capacitances and proposes a circuit-oriented analysis technique that allows the parasitic capacitances to be replaced with linear equivalents. The multitude of developed equivalents are verified through full nonlinear simulation in both MATLAB/Simulink and SPICE, as well as through experimental results.
[BibTeX]IEEE Transactions on Smart Grid2015
arrow_drop_downThis paper presents the design and implementation of a single-phase on-board bidirectional plug-in electric vehicle (PEV) charger that can provide reactive power support to the utility grid in addition to charging the vehicle battery. The topology consists of two-stages: a full-bridge ac-dc boost converter; and a half-bridge bidirectional dc-dc converter. The charger operates in two quadrants in the active-reactive power (PQ) power plane with five different operation modes (i.e., charging-only, charging-capacitive, charging-inductive, capacitive-only, and inductive-only). This paper also presents a unified controller to follow utility PQ commands in a smart grid environment. The cascaded two-stage system controller receives active and reactive power commands from the grid, and results in line current and battery charging current references while also providing a stable dynamic response. The vehicle's battery is not affected during reactive power operation in any of the operation modes. Testing the unified system controller with a 1.44 kVA experimental charger design demonstrates the successful implementation of reactive power support functionality of PEVs for future smart grid applications.
[BibTeX]IEEE Transactions on Smart Grid2014
arrow_drop_downA situational awareness system is essential to provide accurate understanding of power system dynamics, such that proper actions can be taken in real time in response to system disturbances and to avoid cascading blackouts. Event analysis has been an important component in any situational awareness system. However, most state-of-the-art techniques can only handle single event analysis. This paper tackles the challenging problem of multiple event detection and recognition. We propose a new conceptual framework, referred to as event unmixing, where we consider real-world events mixtures of more than one constituent root event. This concept is a key enabler for analysis of events to go beyond what are immediately detectable in a system, providing high-resolution data understanding at a finer scale. We interpret the event formation process from a linear mixing perspective and propose an innovative nonnegative sparse event unmixing (NSEU) algorithm for multiple event separation and temporal localization. The proposed framework has been evaluated using both PSS/E simulated cases and real event cases collected from the frequency disturbance recorders (FDRs) of the Frequency Monitoring Network (FNET). The experimental results demonstrate that the framework is reliable to detect and recognize multiple cascading events as well as their time of occurrence with high accuracy.
[BibTeX]IEEE Transactions on Power Electronics2014
arrow_drop_downThis paper presents an active gate driver (AGD) for IGBT modules to improve their overall performance under normal condition as well as fault condition. Specifically, during normal switching transients, a di/dt feedback controlled current source and current sink is introduced together with a push-pull buffer for dynamic gate current control. Compared to a conventional gate drive strategy, the proposed one has the capability of reducing the switching loss, delay time, and Miller plateau duration during turn-on and turn-off transient without sacrificing current and voltage stress. Under overcurrent condition, it provides a fast protection function for IGBT modules based on the evaluation of fault current level through the di/dt feedback signal. Moreover, the AGD features flexible protection modes, which overcomes the interruption of converter operation in the event of momentary short circuits. A step-down converter is built to evaluate the performance of the proposed driving schemes under various conditions, considering variation of turn-on/off gate resistance, current levels, and short-circuit fault types. Experimental results and detailed analysis are presented to verify the feasibility of the proposed approach.
[BibTeX]IEEE Transactions on Power Electronics2014
arrow_drop_downIn a phase-leg configuration, the high-switching-speed performance of silicon carbide (SiC) devices is limited by the interaction between the upper and lower devices during the switching transient (crosstalk), leading to additional switching losses and overstress of the power devices. To utilize the full potential of fast SiC devices, this paper proposes two gate assist circuits to actively suppress crosstalk on the basis of the intrinsic properties of SiC power devices. One gate assist circuit employs an auxiliary transistor in series with a capacitor to mitigate crosstalk by gate loop impedance reduction. The other gate assist circuit consists of two auxiliary transistors with a diode to actively control the gate voltage for crosstalk elimination. Based on CREE CMF20120D SiC MOSFETs, the experimental results show that both active gate drivers are effective to suppress crosstalk, enabling turn-on switching losses reduction by up to 17%, and negative spurious gate voltage minimization without the penalty of decreasing the switching speed. Furthermore, both gate assist circuits, even without a negative isolated power supply, are more effective in improving the switching behavior of SiC devices in comparison to the conventional gate driver with a -2 V turn-off gate voltage. Accordingly, the proposed active gate assist circuits are simple, efficient, and cost-effective solutions for crosstalk suppression.
[BibTeX]IEEE Transactions on Industrial Electronics2014
arrow_drop_downThis paper presents an improved phase disposition pulsewidth modulation (PWM) (PDPWM) for the modular multilevel converter (MMC) which is based on the selective loop bias mapping (SLBM) method. Its main idea is to change the bias of the PDPWM carrier wave cycling according to the balance situation of the system. This new modulation method can operate at symmetric condition to generate an output voltage with as many as 2N + 1 levels, and by SLBM, the voltages of the upper/lower arm capacitors can be well balanced. Compared to carrier phase-shifted PWM, this method is more easily to be realized and has much stronger dynamic regulation ability. Specially, this method has no issues of sorting, which makes it suitable for MMC with a large number of submodules in one leg. With simulation and experiments, the validity of the proposed method has been shown.
[BibTeX]IEEE Transactions on Power Electronics2014
arrow_drop_downThis paper proposes a novel packaging method for insulated-gate bipolar transistor (IGBT) modules based on the concepts of P-cell and N-cell. The novel packaging reduces the stray inductance in the current commutation path in a phase-leg module and hence improves the switching behavior. A P-cell- and N-cell-based module and a conventional module are designed. Using finite-element-analysis-based Ansys Q3D Extractor, electromagnetic simulations are conducted to extract the stray inductance from the two modules. Two prototype phase-leg modules based on the two different designs are fabricated. The parasitics are measured using a precision impedance analyzer. Finally, a double pulse tester based-switching characterization is performed to illustrate the effect of stray inductance reduction in the proposed packaging design. The experimental results show the reduction in overshoot voltage with the proposed layout.
[BibTeX]IEEE Transactions on Power Electronics2014
arrow_drop_downThis paper presents a unified control method for the combined permanent magnet generator (PMG) and active rectifier that can be used in autonomous power systems such as more-electric aircraft requiring high power density and efficiency. With the proposed control, the system can function well without additional boost inductors and rotor position sensors. The design procedure for the control is presented, including current loops, a voltage loop, and a rotor position estimator loop. Simulation and experimental results show that both the dc-link voltage and the reactive power could be controlled effectively. A system efficiency optimization technique is proposed by selecting the permanent magnet flux linkage and determining the operating points at various load and speed conditions. The power density and efficiency of the PMG and active rectifier system are improved with the unified control.
[BibTeX]IEEE Transactions on Industrial Electronics2014
arrow_drop_downIn this paper, the analysis of space vector modulation of a three-phase/wire/level Vienna rectifier is conducted, according to which the implementation of the equivalent carrier-based pulsewidth modulation is deduced theoretically within each separated sector in the diagram of vectors. The voltage balancing ability of dc-link neutral point, which depends on the uneven distribution of short vectors, is analyzed as well. An adaptive and robust controller to balance the output voltage under the unbalanced load limit for different modulation indices is proposed. The proposed controller can work at wide range of unbalanced load condition as well. Furthermore, the maximum unbalanced load is deduced versus the modulation index m when the converter works in unity power factor. An experimental prototype of 2.5 kW was built to verify the effectiveness of the theoretical analysis. Finally, the tested unbalanced limit of outputs for the experimental platform was given under different modulation indices. The output voltages for dual bus are balanced, and the theoretical analysis is verified.
[BibTeX]IEEE Transactions on Power Electronics2014
arrow_drop_downCurrent ripple is generated by pulse width modulation (PWM) switching in multiphase voltage source converters (VSCs). This letter introduces a general and fast current ripple prediction method for multiphase VSCs with arbitrary phase numbers. An equivalent converter-load model is derived for the n -phase converter system. By combining the common-mode voltage of both converter terminal and load, the equivalent circuit for each phase can be modeled. The voltage dropping on the ac inductor can be calculated for the 2 n + 2 zones in each switching cycle based on the equivalent circuit for each phase. Then the current ripple can be reconstructed based on the linear di/dt model in each zone. Simulation examples of five- and six-phase converters prove that the current prediction method is accurate. With this real-time prediction method, the current ripple can be controlled in application. An application example of five-phase variable switching frequency PWM is introduced to control the peak current ripple and reduce the switching losses.
[BibTeX]IEEE Transactions on Power Electronics2014
arrow_drop_downA three-phase nonlinear load emulator using a power electronic converter is presented in this study. The proposed nonlinear load emulator is intended to be used in an ultrawide-area grid transmission network emulator, also called hardware testbed (HTB). The emulator converter is controlled in rectifier mode to act as the real nonlinear three-phase diode rectifier load. This paper presents an accurate controller for the nonlinear load emulator based on a three-phase diode rectifier system to be used in the HTB. This study also demonstrates simulation and experimental results for verification of the proposed controller.
[BibTeX]IEEE Transactions on Power Electronics2014
arrow_drop_downAn analytical model has been developed for predicting the forced-air cooling system performance, including a detailed optimization process to minimize the total weight. With a design example in a high-density high-temperature SiC converter, the presented design method was verified through numerical simulations and experiments.
[BibTeX]IEEE Transactions on Industry Applications2014
arrow_drop_downThe three-phase pulsewidth-modulation (PWM) converter is one of the most widely used topologies for power conversion. In order to design PWM methods, the influence of PWM methods on the current ripple is needed. This paper studies the current ripple of a three-phase PWM converter with general PWM methods for the design and control of this kind of converter. The current ripple is analyzed with eight different Thevenin equivalent circuits for the eight different voltage vectors. Then, the current-ripple slope and effective time could be achieved for every period. The current ripple could be predicted with both peak and rms values. Analytical predicted results show that discontinuous PWM could generate obviously bigger current ripples than space vector PMW for both peak and rms values with the same conditions. Simulation and experiments are built to verify the analytical results, proving that the theoretical prediction is valid. This analysis provides the basis for the design and control of the PWM method for converters.
[BibTeX]IEEE Transactions on Power Electronics2014
arrow_drop_downA thermally integrated packaging structure for an all silicon carbide (SiC) power module was used to realize highly efficient cooling of power semiconductor devices through direct bonding of the power stage and a cold baseplate. The prototype power modules composed of SiC metal-oxide-semiconductor field-effect transistors and Schottky barrier diodes demonstrate significant improvements such as low-power losses and low-thermal resistance. Direct comparisons to their silicon counterparts, which are composed of insulated gate bipolar transistors and PiN diodes, as well as conventional thermal packaging, were experimentally performed. The advantages of this SiC module in efficiency and power density for power electronics systems have also been identified, with clarification of the SiC attributes and packaging advancements.
[BibTeX]IEEE Journal of Emerging and Selected Topics in Power Electronics2014
arrow_drop_downTo further reduce system costs and package volumes of hybrid electric vehicles, it is important to optimize the power module and associated cooling system. This paper reports the thermal performance evaluation and analysis of three commercial power modules and a proposed planar module with different cooling system. Results show that power electronics can be better merged with the mechanical environment. Experiments and simulations were conducted to help further optimization.
[BibTeX]IEEE Journal of Emerging and Selected Topics in Power Electronics2014
arrow_drop_downA multilayer planar interconnection structure was used for the packaging of liquid-cooled automotive power modules. The power semiconductor switch dies are sandwiched between two symmetric substrates, providing planar electrical interconnections and insulation. Two minicoolers are directly bonded to the outside of these substrates, allowing double-sided, integrated cooling. The power switch dies are orientated in a face-up/face-down 3-D interconnection configuration to form a phase leg. The bonding areas between the dies and substrates, and the substrates and coolers are designed to use identical materials and are formed in one heating process. A special packaging process has been developed so that high-efficiency production can be implemented. Incorporating high-efficiency cooling and low-loss electrical interconnections allows dramatic improvements in systems' cost, and electrical conversion efficiency. These features are demonstrated in a planar bond-packaged prototype of a 200 A/1200 V phase-leg power module made of silicon (Si) insulated gate bipolar transistor and PiN diodes.
[BibTeX]IEEE Transactions on Industrial Electronics2014
arrow_drop_downIn this paper, the analysis of space vector modulation of a three-phase/wire/level Vienna rectifier is conducted, according to which the implementation of the equivalent carrier-based pulsewidth modulation is deduced theoretically within each separated sector in the diagram of vectors. The voltage balancing ability of dc-link neutral point, which depends on the uneven distribution of short vectors, is analyzed as well. An adaptive and robust controller to balance the output voltage under the unbalanced load limit for different modulation indices is proposed. The proposed controller can work at wide range of unbalanced load condition as well. Furthermore, the maximum unbalanced load is deduced versus the modulation index m when the converter works in unity power factor. An experimental prototype of 2.5 kW was built to verify the effectiveness of the theoretical analysis. Finally, the tested unbalanced limit of outputs for the experimental platform was given under different modulation indices. The output voltages for dual bus are balanced, and the theoretical analysis is verified.
[BibTeX]IEEE Transactions on Power Electronics2014
arrow_drop_downCurrent ripple is generated by pulse width modulation (PWM) switching in multiphase voltage source converters (VSCs). This letter introduces a general and fast current ripple prediction method for multiphase VSCs with arbitrary phase numbers. An equivalent converter-load model is derived for the n -phase converter system. By combining the common-mode voltage of both converter terminal and load, the equivalent circuit for each phase can be modeled. The voltage dropping on the ac inductor can be calculated for the 2 n + 2 zones in each switching cycle based on the equivalent circuit for each phase. Then the current ripple can be reconstructed based on the linear di/dt model in each zone. Simulation examples of five- and six-phase converters prove that the current prediction method is accurate. With this real-time prediction method, the current ripple can be controlled in application. An application example of five-phase variable switching frequency PWM is introduced to control the peak current ripple and reduce the switching losses.
[BibTeX]IEEE Transactions on Power Electronics2014
arrow_drop_downA three-phase nonlinear load emulator using a power electronic converter is presented in this study. The proposed nonlinear load emulator is intended to be used in an ultrawide-area grid transmission network emulator, also called hardware testbed (HTB). The emulator converter is controlled in rectifier mode to act as the real nonlinear three-phase diode rectifier load. This paper presents an accurate controller for the nonlinear load emulator based on a three-phase diode rectifier system to be used in the HTB. This study also demonstrates simulation and experimental results for verification of the proposed controller.
[BibTeX]IEEE Transactions on Power Electronics2014
arrow_drop_downAn analytical model has been developed for predicting the forced-air cooling system performance, including a detailed optimization process to minimize the total weight. With a design example in a high-density high-temperature SiC converter, the presented design method was verified through numerical simulations and experiments.
[BibTeX]IEEE Transactions on Industry Applications2014
arrow_drop_downThe three-phase pulsewidth-modulation (PWM) converter is one of the most widely used topologies for power conversion. In order to design PWM methods, the influence of PWM methods on the current ripple is needed. This paper studies the current ripple of a three-phase PWM converter with general PWM methods for the design and control of this kind of converter. The current ripple is analyzed with eight different Thevenin equivalent circuits for the eight different voltage vectors. Then, the current-ripple slope and effective time could be achieved for every period. The current ripple could be predicted with both peak and rms values. Analytical predicted results show that discontinuous PWM could generate obviously bigger current ripples than space vector PMW for both peak and rms values with the same conditions. Simulation and experiments are built to verify the analytical results, proving that the theoretical prediction is valid. This analysis provides the basis for the design and control of the PWM method for converters.
[BibTeX]IEEE Transactions on Power Electronics2014
arrow_drop_downA thermally integrated packaging structure for an all silicon carbide (SiC) power module was used to realize highly efficient cooling of power semiconductor devices through direct bonding of the power stage and a cold baseplate. The prototype power modules composed of SiC metal-oxide-semiconductor field-effect transistors and Schottky barrier diodes demonstrate significant improvements such as low-power losses and low-thermal resistance. Direct comparisons to their silicon counterparts, which are composed of insulated gate bipolar transistors and PiN diodes, as well as conventional thermal packaging, were experimentally performed. The advantages of this SiC module in efficiency and power density for power electronics systems have also been identified, with clarification of the SiC attributes and packaging advancements.
[BibTeX]IEEE Journal of Emerging and Selected Topics in Power Electronics2014
arrow_drop_downTo further reduce system costs and package volumes of hybrid electric vehicles, it is important to optimize the power module and associated cooling system. This paper reports the thermal performance evaluation and analysis of three commercial power modules and a proposed planar module with different cooling system. Results show that power electronics can be better merged with the mechanical environment. Experiments and simulations were conducted to help further optimization.
[BibTeX]IEEE Journal of Emerging and Selected Topics in Power Electronics2014
arrow_drop_downA multilayer planar interconnection structure was used for the packaging of liquid-cooled automotive power modules. The power semiconductor switch dies are sandwiched between two symmetric substrates, providing planar electrical interconnections and insulation. Two minicoolers are directly bonded to the outside of these substrates, allowing double-sided, integrated cooling. The power switch dies are orientated in a face-up/face-down 3-D interconnection configuration to form a phase leg. The bonding areas between the dies and substrates, and the substrates and coolers are designed to use identical materials and are formed in one heating process. A special packaging process has been developed so that high-efficiency production can be implemented. Incorporating high-efficiency cooling and low-loss electrical interconnections allows dramatic improvements in systems' cost, and electrical conversion efficiency. These features are demonstrated in a planar bond-packaged prototype of a 200 A/1200 V phase-leg power module made of silicon (Si) insulated gate bipolar transistor and PiN diodes.
[BibTeX]IEEE Transactions on Industry Applications2013
arrow_drop_downThe low power losses of silicon carbide (SiC) devices provide new opportunities to implement an ultra high-efficiency front-end rectifier for data center power supplies based on a 400-Vdc power distribution architecture, which requires high conversion efficiency in each power conversion stage. This paper presents a 7.5-kW high-efficiency three-phase buck rectifier with 480-Vac,rms input line-to-line voltage and 400-Vdc output voltage using SiC MOSFETs and Schottky diodes. To estimate power devices' losses, which are the dominant portion of total loss, the method of device evaluation and loss calculation is proposed based on a current source topology. This method simulates the current commutation process and estimates devices' losses during switching transients considering devices with and without switching actions in buck rectifier operation. Moreover, the power losses of buck rectifiers based on different combinations of 1200-V power devices are compared. The investigation and comparison demonstrate the benefits of each combination, and the lowest total loss in the all-SiC rectifier is clearly shown. A 7.5-kW prototype of the all-SiC three-phase buck rectifier using liquid cooling is fabricated and tested, with filter design and switching frequency chosen based on loss minimization. A full-load efficiency value greater than 98.5% is achieved.
[BibTeX]IEEE Transactions on Power Electronics2013
arrow_drop_downIn this paper, a fully integrated silicon carbide (SiC)-based six-pack power module is designed and developed. With 1200-V, 100-A module rating, each switching element is composed of four paralleled SiC junction gate field-effect transistors (JFETs) with two antiparallel SiC Schottky barrier diodes. The stability of the module assembly processes is confirmed with 1000 cycles of -40°C to +200°C thermal shock tests with 1.3°C/s temperature change. The static characteristics of the module are evaluated and the results show 55 mΩ on-state resistance of the phase leg at 200°C junction temperature. For switching performances, the experiments demonstrate that while utilizing a 650-V voltage and 60-A current, the module switching loss decreases as the junction temperature increases up to 150°C. The test setup over a large temperature range is also described. Meanwhile, the shoot-through influenced by the SiC JFET internal capacitance as well as package parasitic inductances are discussed. Additionally, a liquid cooled three-phase inverter with 22.9 cm × 22.4 cm × 7.1 cm volume and 3.53-kg weight, based on this power module, is designed and developed for electric vehicle and hybrid electric vehicle applications. A conversion efficiency of 98.5% is achieved at 10 kHz switching frequency at 5 kW output power. The inverter is evaluated with coolant temperature up to 95°C successfully.
[BibTeX]IEEE Transactions on Industry Applications2013
arrow_drop_downThis paper analyzes pulsewidth modulation (PWM) methods' impact on the motor drives' common-mode (CM) noise current and CM choke saturation. The modulation in the motor drive terminals serves as the CM noise source. A few improved PWM methods could reduce the CM voltage amplitude in comparison with the conventional space vector PWM and discontinuous PWM. However, some harmonics of the improved PWM methods increase when considering the spectrum. Because the CM loop of the motor drive system is an L-R-C circuit which has its resonant frequency, the CM noise current is highly influenced by the noise near the resonant frequency. This paper studies the CM current with different PWM methods and claims that the design of PWM methods and switching frequency should be together with the CM loop impedance. Reduced CM voltage does not mean reduced CM current. With a CM choke to attenuate the CM noise, the choke size is determined by the CM volt-seconds on the choke. This paper studies the general case and the worst case of the choke size. The conclusions are supported by simulation and experimental results.
[BibTeX]IEEE Transactions on Industrial Electronics2013
arrow_drop_downUnbalanced grids introduce performance deterioration for Vienna rectifier topology by producing twice fundamental frequency ripples in dc-link voltage and input active/reactive power. A common current reference generation for the purpose of eliminating the input power ripple, such as dual-frame hybrid vector control, can maintain constant input power and eliminate ripples in dc-link voltage under light voltage unbalanced grids. Under severe unbalanced grids, this type of a control method will fail to work. This paper first analyzes the theoretical operation area of a constant power control method under unbalanced grids, and then a novel control method is proposed. The proposed control method can work under severe unbalanced grids by injecting a small amount of input power ripple and balance the performance of working area and output dc voltage ripples. Finally, the experiment results using the constant power control method are given and validate the performance of the proposed control method.
[BibTeX]IEEE Transactions on Industrial Electronics2013
arrow_drop_downA new approach for modulation of an 11-level cascade multilevel inverter using selective harmonic elimination is presented in this paper. The dc sources feeding the multilevel inverter are considered to be varying in time, and the switching angles are adapted to the dc source variation. This method uses genetic algorithms to obtain switching angles offline for different dc source values. Then, artificial neural networks are used to determine the switching angles that correspond to the real-time values of the dc sources for each phase. This implies that each one of the dc sources of this topology can have different values at any time, but the output fundamental voltage will stay constant and the harmonic content will still meet the specifications. The modulating switching angles are updated at each cycle of the output fundamental voltage. This paper gives details on the method in addition to simulation and experimental results.
[BibTeX]IEEE Transactions on Power Electronics2013
arrow_drop_downThis paper proposed an improved phase disposition pulse width modulation (PDPWM) for a modular multilevel inverter which is used for Photovoltaic grid connection. This new modulation method is based on selective virtual loop mapping, to achieve dynamic capacitor voltage balance without the help of an extra compensation signal. The concept of virtual submodule (VSM) is first established, and by changing the loop mapping relationships between the VSMs and the real submodules, the voltages of the upper/lower arm's capacitors can be well balanced. This method does not requiring sorting voltages from highest to lowest, and just identifies the MIN and MAX capacitor voltage's index which makes it suitable for a modular multilevel converter with a large number of submodules in one arm. Compared to carrier phase-shifted PWM (CPSPWM), this method is more easily to be realized in field-programmable gate array and has much stronger dynamic regulation ability, and is conducive to the control of circulating current. Its feasibility and validity have been verified by simulations and experiments.
[BibTeX]IEEE Transactions on Power Electronics2013
arrow_drop_downA Si insulated-gate bipolar transistor (IGBT) phase-leg module is developed for operating at 200°C in hybrid electric vehicle applications utilizing the high temperature packaging technologies and appropriate thermal management. The static and switching electrical characteristics of the fabricated power module are tested at various temperatures, showing that the module can operate reliably with increased but acceptable losses at 200°C. The criterion on thermal performance is given to prevent thermal runaway caused by fast increase of the leakage current during a high temperature operation. Afterward, the thermal management system is designed to meet the criterion, the performance of which is evaluated with experiment. Furthermore, two temperature-sensitive electrical parameters, on-state voltage drop and the switching time, are employed for thermal impedance characterization and the junction temperature measurement during converter operation, respectively. Finally, a 10-kW buck converter prototype composed of the module assembly is built and operated at the junction temperature up to 200°C. The experimental results demonstrate the feasibility of operating Si device-based converters continuously at 200°C.
[BibTeX]